ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supclti GIF version

Theorem supclti 6506
Description: A supremum belongs to its base class (closure law). See also supubti 6507 and suplubti 6508. (Contributed by Jim Kingdon, 24-Nov-2021.)
Hypotheses
Ref Expression
supmoti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
supclti.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Assertion
Ref Expression
supclti (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑦,𝐴,𝑥,𝑧   𝑥,𝐵,𝑦,𝑧   𝑢,𝑅,𝑣,𝑥   𝑦,𝑅,𝑧   𝜑,𝑢,𝑣,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑣,𝑢)

Proof of Theorem supclti
StepHypRef Expression
1 supmoti.ti . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 supclti.2 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
31, 2supval2ti 6503 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
41, 2supeuti 6502 . . 3 (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
5 riotacl 5534 . . 3 (∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ 𝐴)
64, 5syl 14 . 2 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ 𝐴)
73, 6eqeltrd 2159 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wcel 1434  wral 2353  wrex 2354  ∃!wreu 2355   class class class wbr 3805  crio 5519  supcsup 6490
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-un 2986  df-in 2988  df-ss 2995  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-iota 4917  df-riota 5520  df-sup 6492
This theorem is referenced by:  suplub2ti  6509  supelti  6510  supisoti  6518  infclti  6531  inflbti  6532  infglbti  6533  suprubex  8166  suprleubex  8169  suprzclex  8596  supminfex  8836  maxleast  10318  zsupcl  10568  dvdslegcd  10581
  Copyright terms: Public domain W3C validator