Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  supisolem GIF version

Theorem supisolem 6412
 Description: Lemma for supisoti 6414. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
supiso.2 (𝜑𝐶𝐴)
Assertion
Ref Expression
supisolem ((𝜑𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
Distinct variable groups:   𝑤,𝑣,𝑦,𝑧,𝐴   𝑣,𝐶,𝑤,𝑦,𝑧   𝑤,𝐷,𝑦,𝑧   𝜑,𝑤   𝑣,𝐹,𝑤,𝑦,𝑧   𝑤,𝑅,𝑦,𝑧   𝑣,𝑆,𝑤,𝑦,𝑧   𝑣,𝐵,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣)   𝐷(𝑣)   𝑅(𝑣)

Proof of Theorem supisolem
StepHypRef Expression
1 supiso.1 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 supiso.2 . . 3 (𝜑𝐶𝐴)
31, 2jca 294 . 2 (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴))
4 simpll 489 . . . . . . . 8 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
54adantr 265 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
6 simplr 490 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝐷𝐴)
7 simplr 490 . . . . . . . 8 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐶𝐴)
87sselda 2973 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝑦𝐴)
9 isorel 5476 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐷𝐴𝑦𝐴)) → (𝐷𝑅𝑦 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
105, 6, 8, 9syl12anc 1144 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → (𝐷𝑅𝑦 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
1110notbid 602 . . . . 5 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → (¬ 𝐷𝑅𝑦 ↔ ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
1211ralbidva 2339 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
13 isof1o 5475 . . . . . . 7 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
144, 13syl 14 . . . . . 6 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹:𝐴1-1-onto𝐵)
15 f1ofn 5155 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
1614, 15syl 14 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹 Fn 𝐴)
17 breq2 3796 . . . . . . 7 (𝑤 = (𝐹𝑦) → ((𝐹𝐷)𝑆𝑤 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
1817notbid 602 . . . . . 6 (𝑤 = (𝐹𝑦) → (¬ (𝐹𝐷)𝑆𝑤 ↔ ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
1918ralima 5423 . . . . 5 ((𝐹 Fn 𝐴𝐶𝐴) → (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
2016, 7, 19syl2anc 397 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
2112, 20bitr4d 184 . . 3 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ↔ ∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤))
224adantr 265 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
23 simpr 107 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
24 simplr 490 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐷𝐴)
25 isorel 5476 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑦𝐴𝐷𝐴)) → (𝑦𝑅𝐷 ↔ (𝐹𝑦)𝑆(𝐹𝐷)))
2622, 23, 24, 25syl12anc 1144 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (𝑦𝑅𝐷 ↔ (𝐹𝑦)𝑆(𝐹𝐷)))
2722adantr 265 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
28 simplr 490 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝑦𝐴)
297adantr 265 . . . . . . . . . 10 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐶𝐴)
3029sselda 2973 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝑧𝐴)
31 isorel 5476 . . . . . . . . 9 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑦𝐴𝑧𝐴)) → (𝑦𝑅𝑧 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3227, 28, 30, 31syl12anc 1144 . . . . . . . 8 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → (𝑦𝑅𝑧 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3332rexbidva 2340 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑧𝐶 𝑦𝑅𝑧 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3416adantr 265 . . . . . . . 8 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐹 Fn 𝐴)
35 breq2 3796 . . . . . . . . 9 (𝑣 = (𝐹𝑧) → ((𝐹𝑦)𝑆𝑣 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3635rexima 5422 . . . . . . . 8 ((𝐹 Fn 𝐴𝐶𝐴) → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3734, 29, 36syl2anc 397 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3833, 37bitr4d 184 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑧𝐶 𝑦𝑅𝑧 ↔ ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣))
3926, 38imbi12d 227 . . . . 5 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → ((𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣)))
4039ralbidva 2339 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣)))
41 f1ofo 5161 . . . . 5 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
42 breq1 3795 . . . . . . 7 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)𝑆(𝐹𝐷) ↔ 𝑤𝑆(𝐹𝐷)))
43 breq1 3795 . . . . . . . 8 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)𝑆𝑣𝑤𝑆𝑣))
4443rexbidv 2344 . . . . . . 7 ((𝐹𝑦) = 𝑤 → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))
4542, 44imbi12d 227 . . . . . 6 ((𝐹𝑦) = 𝑤 → (((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4645cbvfo 5453 . . . . 5 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4714, 41, 463syl 17 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4840, 47bitrd 181 . . 3 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4921, 48anbi12d 450 . 2 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
503, 49sylan 271 1 ((𝜑𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 101   ↔ wb 102   = wceq 1259   ∈ wcel 1409  ∀wral 2323  ∃wrex 2324   ⊆ wss 2945   class class class wbr 3792   “ cima 4376   Fn wfn 4925  –onto→wfo 4928  –1-1-onto→wf1o 4929  ‘cfv 4930   Isom wiso 4931 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-isom 4939 This theorem is referenced by:  supisoex  6413  supisoti  6414
 Copyright terms: Public domain W3C validator