ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssfv GIF version

Theorem suppssfv 5946
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssfv.a (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
suppssfv.f (𝜑 → (𝐹𝑌) = 𝑍)
suppssfv.v ((𝜑𝑥𝐷) → 𝐴𝑉)
Assertion
Ref Expression
suppssfv (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfv
StepHypRef Expression
1 eldifsni 3622 . . . . 5 ((𝐹𝐴) ∈ (V ∖ {𝑍}) → (𝐹𝐴) ≠ 𝑍)
2 suppssfv.v . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐴𝑉)
3 elex 2671 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ V)
42, 3syl 14 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
54adantr 274 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ V)
6 suppssfv.f . . . . . . . . . . 11 (𝜑 → (𝐹𝑌) = 𝑍)
7 fveq2 5389 . . . . . . . . . . . 12 (𝐴 = 𝑌 → (𝐹𝐴) = (𝐹𝑌))
87eqeq1d 2126 . . . . . . . . . . 11 (𝐴 = 𝑌 → ((𝐹𝐴) = 𝑍 ↔ (𝐹𝑌) = 𝑍))
96, 8syl5ibrcom 156 . . . . . . . . . 10 (𝜑 → (𝐴 = 𝑌 → (𝐹𝐴) = 𝑍))
109necon3d 2329 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1110adantr 274 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1211imp 123 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴𝑌)
13 eldifsn 3620 . . . . . . 7 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
145, 12, 13sylanbrc 413 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ (V ∖ {𝑌}))
1514ex 114 . . . . 5 ((𝜑𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴 ∈ (V ∖ {𝑌})))
161, 15syl5 32 . . . 4 ((𝜑𝑥𝐷) → ((𝐹𝐴) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
1716ss2rabdv 3148 . . 3 (𝜑 → {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
18 eqid 2117 . . . 4 (𝑥𝐷 ↦ (𝐹𝐴)) = (𝑥𝐷 ↦ (𝐹𝐴))
1918mptpreima 5002 . . 3 ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) = {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})}
20 eqid 2117 . . . 4 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
2120mptpreima 5002 . . 3 ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})}
2217, 19, 213sstr4g 3110 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ ((𝑥𝐷𝐴) “ (V ∖ {𝑌})))
23 suppssfv.a . 2 (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
2422, 23sstrd 3077 1 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465  wne 2285  {crab 2397  Vcvv 2660  cdif 3038  wss 3041  {csn 3497  cmpt 3959  ccnv 4508  cima 4512  cfv 5093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-rab 2402  df-v 2662  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-mpt 3961  df-xp 4515  df-rel 4516  df-cnv 4517  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fv 5101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator