ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssfv GIF version

Theorem suppssfv 5735
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssfv.a (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
suppssfv.f (𝜑 → (𝐹𝑌) = 𝑍)
suppssfv.v ((𝜑𝑥𝐷) → 𝐴𝑉)
Assertion
Ref Expression
suppssfv (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfv
StepHypRef Expression
1 eldifsni 3523 . . . . 5 ((𝐹𝐴) ∈ (V ∖ {𝑍}) → (𝐹𝐴) ≠ 𝑍)
2 suppssfv.v . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐴𝑉)
3 elex 2583 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ V)
42, 3syl 14 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
54adantr 265 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ V)
6 suppssfv.f . . . . . . . . . . 11 (𝜑 → (𝐹𝑌) = 𝑍)
7 fveq2 5205 . . . . . . . . . . . 12 (𝐴 = 𝑌 → (𝐹𝐴) = (𝐹𝑌))
87eqeq1d 2064 . . . . . . . . . . 11 (𝐴 = 𝑌 → ((𝐹𝐴) = 𝑍 ↔ (𝐹𝑌) = 𝑍))
96, 8syl5ibrcom 150 . . . . . . . . . 10 (𝜑 → (𝐴 = 𝑌 → (𝐹𝐴) = 𝑍))
109necon3d 2264 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1110adantr 265 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1211imp 119 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴𝑌)
13 eldifsn 3522 . . . . . . 7 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
145, 12, 13sylanbrc 402 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ (V ∖ {𝑌}))
1514ex 112 . . . . 5 ((𝜑𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴 ∈ (V ∖ {𝑌})))
161, 15syl5 32 . . . 4 ((𝜑𝑥𝐷) → ((𝐹𝐴) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
1716ss2rabdv 3048 . . 3 (𝜑 → {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
18 eqid 2056 . . . 4 (𝑥𝐷 ↦ (𝐹𝐴)) = (𝑥𝐷 ↦ (𝐹𝐴))
1918mptpreima 4841 . . 3 ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) = {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})}
20 eqid 2056 . . . 4 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
2120mptpreima 4841 . . 3 ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})}
2217, 19, 213sstr4g 3013 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ ((𝑥𝐷𝐴) “ (V ∖ {𝑌})))
23 suppssfv.a . 2 (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
2422, 23sstrd 2982 1 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  wne 2220  {crab 2327  Vcvv 2574  cdif 2941  wss 2944  {csn 3402  cmpt 3845  ccnv 4371  cima 4375  cfv 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-xp 4378  df-rel 4379  df-cnv 4380  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fv 4937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator