Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprzclex GIF version

Theorem suprzclex 8603
 Description: The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
Hypotheses
Ref Expression
suprzclex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
suprzclex.ss (𝜑𝐴 ⊆ ℤ)
Assertion
Ref Expression
suprzclex (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑧
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem suprzclex
Dummy variables 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7335 . . . . . 6 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 271 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 suprzclex.ex . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
42, 3supclti 6507 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
54ltm1d 8154 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ))
6 suprzclex.ss . . . . 5 (𝜑𝐴 ⊆ ℤ)
7 zssre 8516 . . . . 5 ℤ ⊆ ℝ
86, 7syl6ss 3021 . . . 4 (𝜑𝐴 ⊆ ℝ)
9 peano2rem 7519 . . . . 5 (sup(𝐴, ℝ, < ) ∈ ℝ → (sup(𝐴, ℝ, < ) − 1) ∈ ℝ)
104, 9syl 14 . . . 4 (𝜑 → (sup(𝐴, ℝ, < ) − 1) ∈ ℝ)
113, 8, 10suprlubex 8174 . . 3 (𝜑 → ((sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧))
125, 11mpbid 145 . 2 (𝜑 → ∃𝑧𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧)
136adantr 270 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝐴 ⊆ ℤ)
1413sselda 3009 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ∈ ℤ)
157, 14sseldi 3007 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
164adantr 270 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈ ℝ)
1716adantr 270 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
18 simprl 498 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧𝐴)
1913, 18sseldd 3010 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℤ)
20 zre 8513 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
2119, 20syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℝ)
22 peano2re 7388 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧 + 1) ∈ ℝ)
2321, 22syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (𝑧 + 1) ∈ ℝ)
2423adantr 270 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → (𝑧 + 1) ∈ ℝ)
253ad2antrr 472 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
268ad2antrr 472 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝐴 ⊆ ℝ)
27 simpr 108 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤𝐴)
2825, 26, 27suprubex 8173 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ≤ sup(𝐴, ℝ, < ))
29 simprr 499 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) − 1) < 𝑧)
30 1red 7273 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 1 ∈ ℝ)
3116, 30, 21ltsubaddd 7785 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ((sup(𝐴, ℝ, < ) − 1) < 𝑧 ↔ sup(𝐴, ℝ, < ) < (𝑧 + 1)))
3229, 31mpbid 145 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) < (𝑧 + 1))
3332adantr 270 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → sup(𝐴, ℝ, < ) < (𝑧 + 1))
3415, 17, 24, 28, 33lelttrd 7378 . . . . . . 7 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 < (𝑧 + 1))
3519adantr 270 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑧 ∈ ℤ)
36 zleltp1 8564 . . . . . . . 8 ((𝑤 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑤𝑧𝑤 < (𝑧 + 1)))
3714, 35, 36syl2anc 403 . . . . . . 7 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → (𝑤𝑧𝑤 < (𝑧 + 1)))
3834, 37mpbird 165 . . . . . 6 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤𝑧)
3938ralrimiva 2440 . . . . 5 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ∀𝑤𝐴 𝑤𝑧)
40 breq2 3810 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑦 < 𝑧𝑦 < 𝑤))
4140cbvrexv 2584 . . . . . . . . . . . 12 (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑤𝐴 𝑦 < 𝑤)
4241imbi2i 224 . . . . . . . . . . 11 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤))
4342ralbii 2378 . . . . . . . . . 10 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤))
4443anbi2i 445 . . . . . . . . 9 ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
4544rexbii 2379 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
463, 45sylib 120 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
4746adantr 270 . . . . . 6 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
4813, 7syl6ss 3021 . . . . . 6 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝐴 ⊆ ℝ)
4947, 48, 21suprleubex 8176 . . . . 5 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) ≤ 𝑧 ↔ ∀𝑤𝐴 𝑤𝑧))
5039, 49mpbird 165 . . . 4 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ≤ 𝑧)
5147, 48, 18suprubex 8173 . . . 4 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ≤ sup(𝐴, ℝ, < ))
5216, 21letri3d 7370 . . . 4 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) = 𝑧 ↔ (sup(𝐴, ℝ, < ) ≤ 𝑧𝑧 ≤ sup(𝐴, ℝ, < ))))
5350, 51, 52mpbir2and 886 . . 3 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑧)
5453, 18eqeltrd 2159 . 2 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)
5512, 54rexlimddv 2487 1 (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 102   ↔ wb 103   = wceq 1285   ∈ wcel 1434  ∀wral 2353  ∃wrex 2354   ⊆ wss 2983   class class class wbr 3806  (class class class)co 5565  supcsup 6491  ℝcr 7119  1c1 7121   + caddc 7123   < clt 7292   ≤ cle 7293   − cmin 7423  ℤcz 8509 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-cnex 7206  ax-resscn 7207  ax-1cn 7208  ax-1re 7209  ax-icn 7210  ax-addcl 7211  ax-addrcl 7212  ax-mulcl 7213  ax-addcom 7215  ax-addass 7217  ax-distr 7219  ax-i2m1 7220  ax-0lt1 7221  ax-0id 7223  ax-rnegex 7224  ax-cnre 7226  ax-pre-ltirr 7227  ax-pre-ltwlin 7228  ax-pre-lttrn 7229  ax-pre-apti 7230  ax-pre-ltadd 7231 This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2613  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-br 3807  df-opab 3861  df-id 4077  df-po 4080  df-iso 4081  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-iota 4918  df-fun 4955  df-fv 4961  df-riota 5521  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-sup 6493  df-pnf 7294  df-mnf 7295  df-xr 7296  df-ltxr 7297  df-le 7298  df-sub 7425  df-neg 7426  df-inn 8184  df-n0 8433  df-z 8510 This theorem is referenced by:  infssuzcldc  10579  gcddvds  10587
 Copyright terms: Public domain W3C validator