ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supsnti GIF version

Theorem supsnti 6860
Description: The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.)
Hypotheses
Ref Expression
supsnti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
supsnti.b (𝜑𝐵𝐴)
Assertion
Ref Expression
supsnti (𝜑 → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝐵,𝑣   𝑢,𝑅,𝑣   𝜑,𝑢,𝑣

Proof of Theorem supsnti
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 supsnti.ti . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 supsnti.b . 2 (𝜑𝐵𝐴)
3 snidg 3524 . . 3 (𝐵𝐴𝐵 ∈ {𝐵})
42, 3syl 14 . 2 (𝜑𝐵 ∈ {𝐵})
5 eqid 2117 . . . . . 6 𝐵 = 𝐵
61ralrimivva 2491 . . . . . . 7 (𝜑 → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
7 eqeq1 2124 . . . . . . . . . 10 (𝑢 = 𝐵 → (𝑢 = 𝑣𝐵 = 𝑣))
8 breq1 3902 . . . . . . . . . . . 12 (𝑢 = 𝐵 → (𝑢𝑅𝑣𝐵𝑅𝑣))
98notbid 641 . . . . . . . . . . 11 (𝑢 = 𝐵 → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝐵𝑅𝑣))
10 breq2 3903 . . . . . . . . . . . 12 (𝑢 = 𝐵 → (𝑣𝑅𝑢𝑣𝑅𝐵))
1110notbid 641 . . . . . . . . . . 11 (𝑢 = 𝐵 → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑣𝑅𝐵))
129, 11anbi12d 464 . . . . . . . . . 10 (𝑢 = 𝐵 → ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝐵𝑅𝑣 ∧ ¬ 𝑣𝑅𝐵)))
137, 12bibi12d 234 . . . . . . . . 9 (𝑢 = 𝐵 → ((𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ (𝐵 = 𝑣 ↔ (¬ 𝐵𝑅𝑣 ∧ ¬ 𝑣𝑅𝐵))))
14 eqeq2 2127 . . . . . . . . . 10 (𝑣 = 𝐵 → (𝐵 = 𝑣𝐵 = 𝐵))
15 breq2 3903 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝐵𝑅𝑣𝐵𝑅𝐵))
1615notbid 641 . . . . . . . . . . 11 (𝑣 = 𝐵 → (¬ 𝐵𝑅𝑣 ↔ ¬ 𝐵𝑅𝐵))
17 breq1 3902 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝑣𝑅𝐵𝐵𝑅𝐵))
1817notbid 641 . . . . . . . . . . 11 (𝑣 = 𝐵 → (¬ 𝑣𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵))
1916, 18anbi12d 464 . . . . . . . . . 10 (𝑣 = 𝐵 → ((¬ 𝐵𝑅𝑣 ∧ ¬ 𝑣𝑅𝐵) ↔ (¬ 𝐵𝑅𝐵 ∧ ¬ 𝐵𝑅𝐵)))
2014, 19bibi12d 234 . . . . . . . . 9 (𝑣 = 𝐵 → ((𝐵 = 𝑣 ↔ (¬ 𝐵𝑅𝑣 ∧ ¬ 𝑣𝑅𝐵)) ↔ (𝐵 = 𝐵 ↔ (¬ 𝐵𝑅𝐵 ∧ ¬ 𝐵𝑅𝐵))))
2113, 20rspc2v 2776 . . . . . . . 8 ((𝐵𝐴𝐵𝐴) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) → (𝐵 = 𝐵 ↔ (¬ 𝐵𝑅𝐵 ∧ ¬ 𝐵𝑅𝐵))))
222, 2, 21syl2anc 408 . . . . . . 7 (𝜑 → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) → (𝐵 = 𝐵 ↔ (¬ 𝐵𝑅𝐵 ∧ ¬ 𝐵𝑅𝐵))))
236, 22mpd 13 . . . . . 6 (𝜑 → (𝐵 = 𝐵 ↔ (¬ 𝐵𝑅𝐵 ∧ ¬ 𝐵𝑅𝐵)))
245, 23mpbii 147 . . . . 5 (𝜑 → (¬ 𝐵𝑅𝐵 ∧ ¬ 𝐵𝑅𝐵))
2524simpld 111 . . . 4 (𝜑 → ¬ 𝐵𝑅𝐵)
2625adantr 274 . . 3 ((𝜑𝑥 ∈ {𝐵}) → ¬ 𝐵𝑅𝐵)
27 elsni 3515 . . . . . 6 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
2827breq2d 3911 . . . . 5 (𝑥 ∈ {𝐵} → (𝐵𝑅𝑥𝐵𝑅𝐵))
2928notbid 641 . . . 4 (𝑥 ∈ {𝐵} → (¬ 𝐵𝑅𝑥 ↔ ¬ 𝐵𝑅𝐵))
3029adantl 275 . . 3 ((𝜑𝑥 ∈ {𝐵}) → (¬ 𝐵𝑅𝑥 ↔ ¬ 𝐵𝑅𝐵))
3126, 30mpbird 166 . 2 ((𝜑𝑥 ∈ {𝐵}) → ¬ 𝐵𝑅𝑥)
321, 2, 4, 31supmaxti 6859 1 (𝜑 → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  wral 2393  {csn 3497   class class class wbr 3899  supcsup 6837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-un 3045  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-iota 5058  df-riota 5698  df-sup 6839
This theorem is referenced by:  infsnti  6885
  Copyright terms: Public domain W3C validator