Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2an2 GIF version

Theorem syl2an2 559
 Description: syl2an 283 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.)
Hypotheses
Ref Expression
syl2an2.1 (𝜑𝜓)
syl2an2.2 ((𝜒𝜑) → 𝜃)
syl2an2.3 ((𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syl2an2 ((𝜒𝜑) → 𝜏)

Proof of Theorem syl2an2
StepHypRef Expression
1 syl2an2.1 . . 3 (𝜑𝜓)
2 syl2an2.2 . . 3 ((𝜒𝜑) → 𝜃)
3 syl2an2.3 . . 3 ((𝜓𝜃) → 𝜏)
41, 2, 3syl2an 283 . 2 ((𝜑 ∧ (𝜒𝜑)) → 𝜏)
54anabss7 548 1 ((𝜒𝜑) → 𝜏)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106 This theorem depends on definitions:  df-bi 115 This theorem is referenced by:  qbtwnz  9338  sizef1rn  9813  isumrblem  10337  divalgmod  10471  gcdsupex  10493  gcdsupcl  10494  cncongr2  10630  isprm3  10644
 Copyright terms: Public domain W3C validator