ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an2br GIF version

Theorem syl3an2br 1186
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an2br.1 (𝜒𝜑)
syl3an2br.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an2br ((𝜓𝜑𝜃) → 𝜏)

Proof of Theorem syl3an2br
StepHypRef Expression
1 syl3an2br.1 . . 3 (𝜒𝜑)
21biimpri 128 . 2 (𝜑𝜒)
3 syl3an2br.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an2 1180 1 ((𝜓𝜑𝜃) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102  w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator