ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an3b GIF version

Theorem syl3an3b 1173
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 113 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1170 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  w3a 885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-3an 887
This theorem is referenced by:  fvun2  5240  nnmsucr  6067  apreim  7592  xrlttr  8714  xrltso  8715  iccdil  8864  icccntr  8866  absexpzap  9650
  Copyright terms: Public domain W3C validator