![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eq | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5eq.1 | ⊢ 𝐴 = 𝐵 |
syl5eq.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
syl5eq | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eq.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | syl5eq.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
4 | 2, 3 | eqtrd 2114 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-4 1441 ax-17 1460 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 |
This theorem is referenced by: syl5req 2127 syl5eqr 2128 3eqtr3a 2138 3eqtr4g 2139 csbtt 2919 csbvarg 2934 csbie2g 2953 rabbi2dva 3175 csbprc 3290 disjssun 3308 disjpr2 3458 prprc2 3503 difprsn2 3528 opprc 3593 intsng 3672 riinm 3752 iinxsng 3753 rintm 3767 sucprc 4169 unisucg 4171 xpriindim 4496 relop 4508 dmxpm 4577 riinint 4615 resabs1 4662 resabs2 4663 resima2 4666 xpssres 4667 resopab2 4679 imasng 4714 ndmima 4726 xpdisj1 4771 xpdisj2 4772 djudisj 4774 resdisj 4775 rnxpm 4776 xpima1 4791 xpima2m 4792 dmsnsnsng 4822 rnsnopg 4823 rnpropg 4824 mptiniseg 4839 dfco2a 4845 relcoi1 4873 unixpm 4877 iotaval 4902 funtp 4977 fnun 5030 fnresdisj 5034 fnima 5042 fnimaeq0 5045 fcoi1 5095 f1orescnv 5167 foun 5170 resdif 5173 tz6.12-2 5194 fveu 5195 tz6.12-1 5226 fvun2 5266 fvopab3ig 5272 f1oresrab 5355 dfmptg 5368 ressnop0 5370 fvunsng 5383 fsnunfv 5389 fvpr1 5391 fvpr2 5392 fvpr1g 5393 fvpr2g 5394 fvtp1g 5395 fvtp2g 5396 fvtp3g 5397 fvtp2 5399 fvtp3 5400 f1oiso2 5491 riotaund 5527 ovprc 5565 resoprab2 5623 fnoprabg 5627 ovidig 5643 ovigg 5646 ov6g 5663 ovconst2 5677 offval2 5751 ot1stg 5804 ot2ndg 5805 ot3rdgg 5806 fmpt2co 5862 algrflemg 5876 tpostpos2 5908 rdgisuc1 6027 frec0g 6040 frecsuclem 6049 frecrdg 6051 oasuc 6102 oa1suc 6105 omsuc 6109 nnm1 6156 nnm2 6157 dfec2 6168 errn 6187 phplem2 6378 undiffi 6433 eqinfti 6482 infvalti 6484 infsnti 6492 1qec 6629 mulidnq 6630 addpinq1 6705 0idsr 6995 1idsr 6996 caucvgsrlemoffres 7027 caucvgsr 7029 mulresr 7057 pitonnlem2 7066 ax1rid 7094 axcnre 7098 negid 7411 subneg 7413 negneg 7414 dfinfre 8090 2times 8216 infrenegsupex 8752 rexneg 8962 fseq1p1m1 9176 fzosplitprm1 9309 intfracq 9391 frec2uz0d 9470 frec2uzrdg 9480 frecuzrdg0 9484 frecuzrdgg 9487 frecuzrdg0t 9493 iseqval 9519 iseqvalt 9521 sqval 9620 iexpcyc 9665 binom3 9676 faclbnd 9754 faclbnd2 9755 bcn1 9771 sizeinf 9791 sizeennn 9793 shftlem 9831 shftuz 9832 shftidt 9848 reim0 9875 remullem 9885 resqrexlemf1 10021 resqrexlemcalc3 10029 absexpzap 10093 absimle 10097 amgm2 10131 minmax 10239 ialgr0 10559 ialgrp1 10561 eucialg 10574 ex-ceil 10700 qdencn 10928 |
Copyright terms: Public domain | W3C validator |