Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5eqbrr GIF version

Theorem syl5eqbrr 3823
 Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
Hypotheses
Ref Expression
syl5eqbrr.1 𝐵 = 𝐴
syl5eqbrr.2 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
syl5eqbrr (𝜑𝐴𝑅𝐶)

Proof of Theorem syl5eqbrr
StepHypRef Expression
1 syl5eqbrr.2 . 2 (𝜑𝐵𝑅𝐶)
2 syl5eqbrr.1 . 2 𝐵 = 𝐴
3 eqid 2054 . 2 𝐶 = 𝐶
41, 2, 33brtr3g 3820 1 (𝜑𝐴𝑅𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1257   class class class wbr 3789 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036 This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-v 2574  df-un 2947  df-sn 3406  df-pr 3407  df-op 3409  df-br 3790 This theorem is referenced by:  enpr1g  6306  recexprlem1ssl  6759  addgt0  7487  addgegt0  7488  addgtge0  7489  addge0  7490  expge1  9422
 Copyright terms: Public domain W3C validator