![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eqssr | GIF version |
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
syl5eqssr.1 | ⊢ 𝐵 = 𝐴 |
syl5eqssr.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
syl5eqssr | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqssr.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2087 | . 2 ⊢ 𝐴 = 𝐵 |
3 | syl5eqssr.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | syl5eqss 3052 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ⊆ wss 2982 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-in 2988 df-ss 2995 |
This theorem is referenced by: relcnvtr 4890 resasplitss 5120 fimacnvdisj 5125 fimacnv 5349 f1ompt 5373 tfr1onlemres 6019 tfrcllemres 6032 |
Copyright terms: Public domain | W3C validator |