![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6breqr | GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
syl6breqr.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
syl6breqr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
syl6breqr | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6breqr.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | syl6breqr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2086 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | syl6breq 3826 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 class class class wbr 3787 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-un 2978 df-sn 3406 df-pr 3407 df-op 3409 df-br 3788 |
This theorem is referenced by: fiunsnnn 6405 unsnfi 6429 gtndiv 8512 intqfrac2 9390 uzenom 9496 |
Copyright terms: Public domain | W3C validator |