ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6breqr GIF version

Theorem syl6breqr 3827
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
Hypotheses
Ref Expression
syl6breqr.1 (𝜑𝐴𝑅𝐵)
syl6breqr.2 𝐶 = 𝐵
Assertion
Ref Expression
syl6breqr (𝜑𝐴𝑅𝐶)

Proof of Theorem syl6breqr
StepHypRef Expression
1 syl6breqr.1 . 2 (𝜑𝐴𝑅𝐵)
2 syl6breqr.2 . . 3 𝐶 = 𝐵
32eqcomi 2086 . 2 𝐵 = 𝐶
41, 3syl6breq 3826 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285   class class class wbr 3787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-sn 3406  df-pr 3407  df-op 3409  df-br 3788
This theorem is referenced by:  fiunsnnn  6405  unsnfi  6429  gtndiv  8512  intqfrac2  9390  uzenom  9496
  Copyright terms: Public domain W3C validator