Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan2br GIF version

Theorem sylan2br 282
 Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.)
Hypotheses
Ref Expression
sylan2br.1 (𝜒𝜑)
sylan2br.2 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
sylan2br ((𝜓𝜑) → 𝜃)

Proof of Theorem sylan2br
StepHypRef Expression
1 sylan2br.1 . . 3 (𝜒𝜑)
21biimpri 131 . 2 (𝜑𝜒)
3 sylan2br.2 . 2 ((𝜓𝜒) → 𝜃)
42, 3sylan2 280 1 ((𝜓𝜑) → 𝜃)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106 This theorem depends on definitions:  df-bi 115 This theorem is referenced by:  syl2anbr  286  xordc1  1325  imainss  4769  xpexr2m  4792  funeu2  4957  imadiflem  5009  fnop  5033  ssimaex  5266  isosolem  5494  acexmidlem2  5540  fnovex  5569  cnvoprab  5886  smores3  5942  freccllem  6051  riinerm  6245  enq0sym  6684  peano5nnnn  7120  axcaucvglemres  7127  uzind3  8541  xrltnsym  8944  0fz1  9140  iseqfcl  9535  iseqfclt  9536  expivallem  9574  expival  9575  exp1  9579  expp1  9580  resqrexlemf1  10032  resqrexlemfp1  10033  clim2iser  10313  clim2iser2  10314  iisermulc2  10316  iserile  10318  climserile  10321  gcd0id  10514  lcmgcd  10604  lcmdvds  10605  lcmid  10606  isprm2lem  10642
 Copyright terms: Public domain W3C validator