ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan2i GIF version

Theorem sylan2i 393
Description: A syllogism inference. (Contributed by NM, 1-Aug-1994.)
Hypotheses
Ref Expression
sylan2i.1 (𝜑𝜃)
sylan2i.2 (𝜓 → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
sylan2i (𝜓 → ((𝜒𝜑) → 𝜏))

Proof of Theorem sylan2i
StepHypRef Expression
1 sylan2i.1 . . 3 (𝜑𝜃)
21a1i 9 . 2 (𝜓 → (𝜑𝜃))
3 sylan2i.2 . 2 (𝜓 → ((𝜒𝜃) → 𝜏))
42, 3sylan2d 282 1 (𝜓 → ((𝜒𝜑) → 𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  syl2ani  394
  Copyright terms: Public domain W3C validator