![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > symdifxor | GIF version |
Description: Expressing symmetric difference with exclusive-or or two differences. (Contributed by Jim Kingdon, 28-Jul-2018.) |
Ref | Expression |
---|---|
symdifxor | ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 2991 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 2991 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | orbi12i 714 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ 𝐵) ∨ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
4 | elun 3123 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) | |
5 | excxor 1310 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (¬ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
6 | ancom 262 | . . . . 5 ⊢ ((¬ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
7 | 6 | orbi2i 712 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (¬ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
8 | 5, 7 | bitri 182 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
9 | 3, 4, 8 | 3bitr4i 210 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)) |
10 | 9 | abbi2i 2197 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 102 ∨ wo 662 = wceq 1285 ⊻ wxo 1307 ∈ wcel 1434 {cab 2069 ∖ cdif 2979 ∪ cun 2980 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-xor 1308 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2612 df-dif 2984 df-un 2986 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |