ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tbtru GIF version

Theorem tbtru 1269
Description: A proposition is equivalent to itself being equivalent to . (Contributed by Anthony Hart, 14-Aug-2011.)
Assertion
Ref Expression
tbtru (𝜑 ↔ (𝜑 ↔ ⊤))

Proof of Theorem tbtru
StepHypRef Expression
1 tru 1263 . 2
21tbt 240 1 (𝜑 ↔ (𝜑 ↔ ⊤))
Colors of variables: wff set class
Syntax hints:  wb 102  wtru 1260
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-tru 1262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator