![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfis3 | GIF version |
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.) |
Ref | Expression |
---|---|
tfis3.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
tfis3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
tfis3.3 | ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
Ref | Expression |
---|---|
tfis3 | ⊢ (𝐴 ∈ On → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfis3.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | tfis3.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | tfis3.3 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
4 | 2, 3 | tfis2 4328 | . 2 ⊢ (𝑥 ∈ On → 𝜑) |
5 | 1, 4 | vtoclga 2665 | 1 ⊢ (𝐴 ∈ On → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1285 ∈ wcel 1434 ∀wral 2349 Oncon0 4120 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-setind 4282 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-in 2980 df-ss 2987 df-uni 3604 df-tr 3878 df-iord 4123 df-on 4125 |
This theorem is referenced by: tfisi 4330 tfrlemi1 5975 tfr1onlemaccex 5991 tfrcllemaccex 6004 tfrcl 6007 |
Copyright terms: Public domain | W3C validator |