ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis3 GIF version

Theorem tfis3 4252
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.)
Hypotheses
Ref Expression
tfis3.1 (x = y → (φψ))
tfis3.2 (x = A → (φχ))
tfis3.3 (x On → (y x ψφ))
Assertion
Ref Expression
tfis3 (A On → χ)
Distinct variable groups:   ψ,x   φ,y   χ,x   x,A   x,y
Allowed substitution hints:   φ(x)   ψ(y)   χ(y)   A(y)

Proof of Theorem tfis3
StepHypRef Expression
1 tfis3.2 . 2 (x = A → (φχ))
2 tfis3.1 . . 3 (x = y → (φψ))
3 tfis3.3 . . 3 (x On → (y x ψφ))
42, 3tfis2 4251 . 2 (x On → φ)
51, 4vtoclga 2613 1 (A On → χ)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1242   wcel 1390  wral 2300  Oncon0 4066
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-setind 4220
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-in 2918  df-ss 2925  df-uni 3572  df-tr 3846  df-iord 4069  df-on 4071
This theorem is referenced by:  tfisi  4253  tfrlemi1  5887  rdgon  5913
  Copyright terms: Public domain W3C validator