Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemex GIF version

Theorem tfrcllemex 6030
 Description: Lemma for tfrcl 6034. (Contributed by Jim Kingdon, 26-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllemex (𝜑 → ∃𝑓(𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,,𝑧   𝑢,𝐵,𝑓   𝑤,𝐵,𝑔,𝑧   𝐷,,𝑧   𝑢,𝐷,𝑤   𝑦,𝑤   ,𝐺,𝑧   𝑢,𝐺,𝑤   𝑆,𝑔,,𝑧   𝑧,𝑋   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑢)   𝐴(𝑤,𝑢)   𝐵(𝑥,𝑦)   𝑆(𝑤,𝑢)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑢,𝑔,)

Proof of Theorem tfrcllemex
StepHypRef Expression
1 tfrcl.f . . . 4 𝐹 = recs(𝐺)
2 tfrcl.g . . . 4 (𝜑 → Fun 𝐺)
3 tfrcl.x . . . 4 (𝜑 → Ord 𝑋)
4 tfrcl.ex . . . 4 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
5 tfrcllemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
6 tfrcllembacc.3 . . . 4 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
7 tfrcllembacc.u . . . 4 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
8 tfrcllembacc.4 . . . 4 (𝜑𝐷𝑋)
9 tfrcllembacc.5 . . . 4 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
101, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembex 6028 . . 3 (𝜑𝐵 ∈ V)
11 uniexg 4221 . . 3 (𝐵 ∈ V → 𝐵 ∈ V)
1210, 11syl 14 . 2 (𝜑 𝐵 ∈ V)
131, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembfn 6027 . . 3 (𝜑 𝐵:𝐷𝑆)
141, 2, 3, 4, 5, 6, 7, 8, 9tfrcllemubacc 6029 . . 3 (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
1513, 14jca 300 . 2 (𝜑 → ( 𝐵:𝐷𝑆 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
16 feq1 5081 . . . 4 (𝑓 = 𝐵 → (𝑓:𝐷𝑆 𝐵:𝐷𝑆))
17 fveq1 5229 . . . . . 6 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
18 reseq1 4654 . . . . . . 7 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
1918fveq2d 5234 . . . . . 6 (𝑓 = 𝐵 → (𝐺‘(𝑓𝑢)) = (𝐺‘( 𝐵𝑢)))
2017, 19eqeq12d 2097 . . . . 5 (𝑓 = 𝐵 → ((𝑓𝑢) = (𝐺‘(𝑓𝑢)) ↔ ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
2120ralbidv 2373 . . . 4 (𝑓 = 𝐵 → (∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢)) ↔ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
2216, 21anbi12d 457 . . 3 (𝑓 = 𝐵 → ((𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))) ↔ ( 𝐵:𝐷𝑆 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))))
2322spcegv 2695 . 2 ( 𝐵 ∈ V → (( 𝐵:𝐷𝑆 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))) → ∃𝑓(𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢)))))
2412, 15, 23sylc 61 1 (𝜑 → ∃𝑓(𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ∧ w3a 920   = wceq 1285  ∃wex 1422   ∈ wcel 1434  {cab 2069  ∀wral 2353  ∃wrex 2354  Vcvv 2610   ∪ cun 2980  {csn 3416  ⟨cop 3419  ∪ cuni 3621  Ord word 4145  suc csuc 4148   ↾ cres 4393  Fun wfun 4946  ⟶wf 4948  ‘cfv 4952  recscrecs 5974 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-recs 5975 This theorem is referenced by:  tfrcllemaccex  6031
 Copyright terms: Public domain W3C validator