![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrcllemex | GIF version |
Description: Lemma for tfrcl 6034. (Contributed by Jim Kingdon, 26-Mar-2022.) |
Ref | Expression |
---|---|
tfrcl.f | ⊢ 𝐹 = recs(𝐺) |
tfrcl.g | ⊢ (𝜑 → Fun 𝐺) |
tfrcl.x | ⊢ (𝜑 → Ord 𝑋) |
tfrcl.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
tfrcllemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
tfrcllembacc.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} |
tfrcllembacc.u | ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
tfrcllembacc.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑋) |
tfrcllembacc.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
Ref | Expression |
---|---|
tfrcllemex | ⊢ (𝜑 → ∃𝑓(𝑓:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrcl.f | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
2 | tfrcl.g | . . . 4 ⊢ (𝜑 → Fun 𝐺) | |
3 | tfrcl.x | . . . 4 ⊢ (𝜑 → Ord 𝑋) | |
4 | tfrcl.ex | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | |
5 | tfrcllemsucfn.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
6 | tfrcllembacc.3 | . . . 4 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} | |
7 | tfrcllembacc.u | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | |
8 | tfrcllembacc.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑋) | |
9 | tfrcllembacc.5 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllembex 6028 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | uniexg 4221 | . . 3 ⊢ (𝐵 ∈ V → ∪ 𝐵 ∈ V) | |
12 | 10, 11 | syl 14 | . 2 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllembfn 6027 | . . 3 ⊢ (𝜑 → ∪ 𝐵:𝐷⟶𝑆) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllemubacc 6029 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) |
15 | 13, 14 | jca 300 | . 2 ⊢ (𝜑 → (∪ 𝐵:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
16 | feq1 5081 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (𝑓:𝐷⟶𝑆 ↔ ∪ 𝐵:𝐷⟶𝑆)) | |
17 | fveq1 5229 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝑓‘𝑢) = (∪ 𝐵‘𝑢)) | |
18 | reseq1 4654 | . . . . . . 7 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 ↾ 𝑢) = (∪ 𝐵 ↾ 𝑢)) | |
19 | 18 | fveq2d 5234 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝐺‘(𝑓 ↾ 𝑢)) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) |
20 | 17, 19 | eqeq12d 2097 | . . . . 5 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)) ↔ (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
21 | 20 | ralbidv 2373 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
22 | 16, 21 | anbi12d 457 | . . 3 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢))) ↔ (∪ 𝐵:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))))) |
23 | 22 | spcegv 2695 | . 2 ⊢ (∪ 𝐵 ∈ V → ((∪ 𝐵:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) → ∃𝑓(𝑓:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢))))) |
24 | 12, 15, 23 | sylc 61 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 920 = wceq 1285 ∃wex 1422 ∈ wcel 1434 {cab 2069 ∀wral 2353 ∃wrex 2354 Vcvv 2610 ∪ cun 2980 {csn 3416 〈cop 3419 ∪ cuni 3621 Ord word 4145 suc csuc 4148 ↾ cres 4393 Fun wfun 4946 ⟶wf 4948 ‘cfv 4952 recscrecs 5974 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-id 4076 df-iord 4149 df-on 4151 df-suc 4154 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-recs 5975 |
This theorem is referenced by: tfrcllemaccex 6031 |
Copyright terms: Public domain | W3C validator |