ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemssrecs GIF version

Theorem tfrcllemssrecs 6242
Description: Lemma for tfrcl 6254. The union of functions acceptable for tfrcl 6254 is a subset of recs. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcllemssrecs.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemssrecs.x (𝜑 → Ord 𝑋)
Assertion
Ref Expression
tfrcllemssrecs (𝜑 𝐴 ⊆ recs(𝐺))
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑥,𝑋   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦,𝑓)   𝑆(𝑥,𝑦,𝑓)   𝑋(𝑦,𝑓)

Proof of Theorem tfrcllemssrecs
StepHypRef Expression
1 tfrcllemssrecs.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
2 tfrcllemssrecs.x . . . . . 6 (𝜑 → Ord 𝑋)
3 ordsson 4403 . . . . . 6 (Ord 𝑋𝑋 ⊆ On)
4 ssrexv 3157 . . . . . 6 (𝑋 ⊆ On → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
52, 3, 43syl 17 . . . . 5 (𝜑 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
65ss2abdv 3165 . . . 4 (𝜑 → {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
71, 6eqsstrid 3138 . . 3 (𝜑𝐴 ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
87unissd 3755 . 2 (𝜑 𝐴 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
9 ffn 5267 . . . . . . 7 (𝑓:𝑥𝑆𝑓 Fn 𝑥)
109anim1i 338 . . . . . 6 ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
1110reximi 2527 . . . . 5 (∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
1211ss2abi 3164 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1312unissi 3754 . . 3 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
14 df-recs 6195 . . 3 recs(𝐺) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1513, 14sseqtrri 3127 . 2 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ recs(𝐺)
168, 15sstrdi 3104 1 (𝜑 𝐴 ⊆ recs(𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  {cab 2123  wral 2414  wrex 2415  wss 3066   cuni 3731  Ord word 4279  Oncon0 4280  cres 4536   Fn wfn 5113  wf 5114  cfv 5118  recscrecs 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-in 3072  df-ss 3079  df-uni 3732  df-tr 4022  df-iord 4283  df-on 4285  df-f 5122  df-recs 6195
This theorem is referenced by:  tfrcllembfn  6247  tfrcllemubacc  6249  tfrcllemres  6252
  Copyright terms: Public domain W3C validator