Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem5 GIF version

Theorem tfrlem5 5983
 Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem5 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,,𝑢,𝑣,𝐹   𝐴,𝑔,
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑓)

Proof of Theorem tfrlem5
Dummy variables 𝑧 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 vex 2613 . . 3 𝑔 ∈ V
31, 2tfrlem3a 5979 . 2 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
4 vex 2613 . . 3 ∈ V
51, 4tfrlem3a 5979 . 2 (𝐴 ↔ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎))))
6 reeanv 2528 . . 3 (∃𝑧 ∈ On ∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ↔ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))))
7 simp2ll 1006 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑔 Fn 𝑧)
8 simp3l 967 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑔𝑢)
9 fnbr 5052 . . . . . . . . . 10 ((𝑔 Fn 𝑧𝑥𝑔𝑢) → 𝑥𝑧)
107, 8, 9syl2anc 403 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑧)
11 simp2rl 1008 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fn 𝑤)
12 simp3r 968 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑣)
13 fnbr 5052 . . . . . . . . . 10 (( Fn 𝑤𝑥𝑣) → 𝑥𝑤)
1411, 12, 13syl2anc 403 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑤)
15 elin 3165 . . . . . . . . 9 (𝑥 ∈ (𝑧𝑤) ↔ (𝑥𝑧𝑥𝑤))
1610, 14, 15sylanbrc 408 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥 ∈ (𝑧𝑤))
17 onin 4169 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤) ∈ On)
18173ad2ant1 960 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ∈ On)
19 fnfun 5047 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → Fun 𝑔)
207, 19syl 14 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fun 𝑔)
21 inss1 3202 . . . . . . . . . . 11 (𝑧𝑤) ⊆ 𝑧
22 fndm 5049 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
237, 22syl 14 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → dom 𝑔 = 𝑧)
2421, 23syl5sseqr 3057 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ⊆ dom 𝑔)
2520, 24jca 300 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (Fun 𝑔 ∧ (𝑧𝑤) ⊆ dom 𝑔))
26 fnfun 5047 . . . . . . . . . . 11 ( Fn 𝑤 → Fun )
2711, 26syl 14 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fun )
28 inss2 3203 . . . . . . . . . . 11 (𝑧𝑤) ⊆ 𝑤
29 fndm 5049 . . . . . . . . . . . 12 ( Fn 𝑤 → dom = 𝑤)
3011, 29syl 14 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → dom = 𝑤)
3128, 30syl5sseqr 3057 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ⊆ dom )
3227, 31jca 300 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (Fun ∧ (𝑧𝑤) ⊆ dom ))
33 simp2lr 1007 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎)))
34 ssralv 3067 . . . . . . . . . 10 ((𝑧𝑤) ⊆ 𝑧 → (∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝐹‘(𝑔𝑎))))
3521, 33, 34mpsyl 64 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝐹‘(𝑔𝑎)))
36 simp2rr 1009 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))
37 ssralv 3067 . . . . . . . . . 10 ((𝑧𝑤) ⊆ 𝑤 → (∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)) → ∀𝑎 ∈ (𝑧𝑤)(𝑎) = (𝐹‘(𝑎))))
3828, 36, 37mpsyl 64 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑎) = (𝐹‘(𝑎)))
3918, 25, 32, 35, 38tfrlem1 5977 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝑎))
40 fveq2 5229 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑔𝑎) = (𝑔𝑥))
41 fveq2 5229 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎) = (𝑥))
4240, 41eqeq12d 2097 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑔𝑎) = (𝑎) ↔ (𝑔𝑥) = (𝑥)))
4342rspcv 2706 . . . . . . . 8 (𝑥 ∈ (𝑧𝑤) → (∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝑎) → (𝑔𝑥) = (𝑥)))
4416, 39, 43sylc 61 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑔𝑥) = (𝑥))
45 funbrfv 5264 . . . . . . . 8 (Fun 𝑔 → (𝑥𝑔𝑢 → (𝑔𝑥) = 𝑢))
4620, 8, 45sylc 61 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑔𝑥) = 𝑢)
47 funbrfv 5264 . . . . . . . 8 (Fun → (𝑥𝑣 → (𝑥) = 𝑣))
4827, 12, 47sylc 61 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑥) = 𝑣)
4944, 46, 483eqtr3d 2123 . . . . . 6 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑢 = 𝑣)
50493exp 1138 . . . . 5 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)))
5150rexlimdva 2482 . . . 4 (𝑧 ∈ On → (∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)))
5251rexlimiv 2476 . . 3 (∃𝑧 ∈ On ∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
536, 52sylbir 133 . 2 ((∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
543, 5, 53syl2anb 285 1 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ∧ w3a 920   = wceq 1285   ∈ wcel 1434  {cab 2069  ∀wral 2353  ∃wrex 2354   ∩ cin 2981   ⊆ wss 2982   class class class wbr 3805  Oncon0 4146  dom cdm 4391   ↾ cres 4393  Fun wfun 4946   Fn wfn 4947  ‘cfv 4952 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-setind 4308 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-res 4403  df-iota 4917  df-fun 4954  df-fn 4955  df-fv 4960 This theorem is referenced by:  tfrlem7  5986  tfrexlem  6003
 Copyright terms: Public domain W3C validator