![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrlem6 | GIF version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem6 | ⊢ Rel recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reluni 4488 | . . 3 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑔 ∈ 𝐴 Rel 𝑔) | |
2 | tfrlem.1 | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
3 | 2 | tfrlem4 5962 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) |
4 | funrel 4949 | . . . 4 ⊢ (Fun 𝑔 → Rel 𝑔) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (𝑔 ∈ 𝐴 → Rel 𝑔) |
6 | 1, 5 | mprgbir 2422 | . 2 ⊢ Rel ∪ 𝐴 |
7 | 2 | recsfval 5964 | . . 3 ⊢ recs(𝐹) = ∪ 𝐴 |
8 | 7 | releqi 4449 | . 2 ⊢ (Rel recs(𝐹) ↔ Rel ∪ 𝐴) |
9 | 6, 8 | mpbir 144 | 1 ⊢ Rel recs(𝐹) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1285 ∈ wcel 1434 {cab 2068 ∀wral 2349 ∃wrex 2350 ∪ cuni 3609 Oncon0 4126 ↾ cres 4373 Rel wrel 4376 Fun wfun 4926 Fn wfn 4927 ‘cfv 4932 recscrecs 5953 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-iun 3688 df-br 3794 df-opab 3848 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-res 4383 df-iota 4897 df-fun 4934 df-fn 4935 df-fv 4940 df-recs 5954 |
This theorem is referenced by: tfrlem7 5966 |
Copyright terms: Public domain | W3C validator |