ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem8 GIF version

Theorem tfrlem8 6215
Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem8 Ord dom recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem8
Dummy variables 𝑔 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem3 6208 . . . . . . . 8 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤)))}
32abeq2i 2250 . . . . . . 7 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
4 fndm 5222 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
54adantr 274 . . . . . . . . . 10 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 = 𝑧)
65eleq1d 2208 . . . . . . . . 9 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (dom 𝑔 ∈ On ↔ 𝑧 ∈ On))
76biimprcd 159 . . . . . . . 8 (𝑧 ∈ On → ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 ∈ On))
87rexlimiv 2543 . . . . . . 7 (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 ∈ On)
93, 8sylbi 120 . . . . . 6 (𝑔𝐴 → dom 𝑔 ∈ On)
10 eleq1a 2211 . . . . . 6 (dom 𝑔 ∈ On → (𝑧 = dom 𝑔𝑧 ∈ On))
119, 10syl 14 . . . . 5 (𝑔𝐴 → (𝑧 = dom 𝑔𝑧 ∈ On))
1211rexlimiv 2543 . . . 4 (∃𝑔𝐴 𝑧 = dom 𝑔𝑧 ∈ On)
1312abssi 3172 . . 3 {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} ⊆ On
14 ssorduni 4403 . . 3 ({𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} ⊆ On → Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔})
1513, 14ax-mp 5 . 2 Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
161recsfval 6212 . . . . 5 recs(𝐹) = 𝐴
1716dmeqi 4740 . . . 4 dom recs(𝐹) = dom 𝐴
18 dmuni 4749 . . . 4 dom 𝐴 = 𝑔𝐴 dom 𝑔
19 vex 2689 . . . . . 6 𝑔 ∈ V
2019dmex 4805 . . . . 5 dom 𝑔 ∈ V
2120dfiun2 3847 . . . 4 𝑔𝐴 dom 𝑔 = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
2217, 18, 213eqtri 2164 . . 3 dom recs(𝐹) = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
23 ordeq 4294 . . 3 (dom recs(𝐹) = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} → (Ord dom recs(𝐹) ↔ Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}))
2422, 23ax-mp 5 . 2 (Ord dom recs(𝐹) ↔ Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔})
2515, 24mpbir 145 1 Ord dom recs(𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  {cab 2125  wral 2416  wrex 2417  wss 3071   cuni 3736   ciun 3813  Ord word 4284  Oncon0 4285  dom cdm 4539  cres 4541   Fn wfn 5118  cfv 5123  recscrecs 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-tr 4027  df-iord 4288  df-on 4290  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-recs 6202
This theorem is referenced by:  tfrlemi14d  6230  tfri1dALT  6248
  Copyright terms: Public domain W3C validator