ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi1 GIF version

Theorem tfrlemi1 6197
Description: We can define an acceptable function on any ordinal.

As with many of the transfinite recursion theorems, we have a hypothesis that states that 𝐹 is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlemi1 ((𝜑𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑥,𝑦,𝐴   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝜑,𝑦   𝐶,𝑔,𝑢   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑔)   𝐶(𝑥,𝑦,𝑓)

Proof of Theorem tfrlemi1
Dummy variables 𝑒 𝑘 𝑡 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → 𝑔 = 𝑘)
2 simpl 108 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → 𝑧 = 𝑤)
31, 2fneq12d 5185 . . . . . 6 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔 Fn 𝑧𝑘 Fn 𝑤))
41fveq1d 5391 . . . . . . . 8 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔𝑢) = (𝑘𝑢))
51reseq1d 4788 . . . . . . . . 9 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔𝑢) = (𝑘𝑢))
65fveq2d 5393 . . . . . . . 8 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝐹‘(𝑔𝑢)) = (𝐹‘(𝑘𝑢)))
74, 6eqeq12d 2132 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → ((𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
82, 7raleqbidv 2615 . . . . . 6 ((𝑧 = 𝑤𝑔 = 𝑘) → (∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
93, 8anbi12d 464 . . . . 5 ((𝑧 = 𝑤𝑔 = 𝑘) → ((𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
109cbvexdva 1881 . . . 4 (𝑧 = 𝑤 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
1110imbi2d 229 . . 3 (𝑧 = 𝑤 → ((𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) ↔ (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))))
12 fneq2 5182 . . . . . 6 (𝑧 = 𝐶 → (𝑔 Fn 𝑧𝑔 Fn 𝐶))
13 raleq 2603 . . . . . 6 (𝑧 = 𝐶 → (∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1412, 13anbi12d 464 . . . . 5 (𝑧 = 𝐶 → ((𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1514exbidv 1781 . . . 4 (𝑧 = 𝐶 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1615imbi2d 229 . . 3 (𝑧 = 𝐶 → ((𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) ↔ (𝜑 → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
17 r19.21v 2486 . . . 4 (∀𝑤𝑧 (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) ↔ (𝜑 → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
18 tfrlemisucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1918tfrlem3 6176 . . . . . . . 8 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑒𝑧 (𝑔𝑒) = (𝐹‘(𝑔𝑒)))}
20 tfrlemisucfn.2 . . . . . . . . . 10 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
21 fveq2 5389 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
2221eleq1d 2186 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ V ↔ (𝐹𝑧) ∈ V))
2322anbi2d 459 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹𝑧) ∈ V)))
2423cbvalv 1871 . . . . . . . . . 10 (∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2520, 24sylib 121 . . . . . . . . 9 (𝜑 → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2625adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
27 simpr 109 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑘 = 𝑓)
28 simplr 504 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑤 = 𝑣)
2927, 28fneq12d 5185 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘 Fn 𝑤𝑓 Fn 𝑣))
3027eleq1d 2186 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘𝐴𝑓𝐴))
31 simpll 503 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑡 = )
3227fveq2d 5393 . . . . . . . . . . . . . . . 16 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝐹𝑘) = (𝐹𝑓))
3328, 32opeq12d 3683 . . . . . . . . . . . . . . 15 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → ⟨𝑤, (𝐹𝑘)⟩ = ⟨𝑣, (𝐹𝑓)⟩)
3433sneqd 3510 . . . . . . . . . . . . . 14 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → {⟨𝑤, (𝐹𝑘)⟩} = {⟨𝑣, (𝐹𝑓)⟩})
3527, 34uneq12d 3201 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}) = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))
3631, 35eqeq12d 2132 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}) ↔ = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩})))
3729, 30, 363anbi123d 1275 . . . . . . . . . . 11 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → ((𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ (𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
3837cbvexdva 1881 . . . . . . . . . 10 ((𝑡 = 𝑤 = 𝑣) → (∃𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ ∃𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
3938cbvrexdva 2638 . . . . . . . . 9 (𝑡 = → (∃𝑤𝑧𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ ∃𝑣𝑧𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
4039cbvabv 2241 . . . . . . . 8 {𝑡 ∣ ∃𝑤𝑧𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}))} = { ∣ ∃𝑣𝑧𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))}
41 simpl 108 . . . . . . . . 9 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → 𝑧 ∈ On)
4241adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → 𝑧 ∈ On)
43 simpr 109 . . . . . . . . . 10 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
44 simpr 109 . . . . . . . . . . . . . 14 ((𝑤 = 𝑣𝑘 = 𝑓) → 𝑘 = 𝑓)
45 simpl 108 . . . . . . . . . . . . . 14 ((𝑤 = 𝑣𝑘 = 𝑓) → 𝑤 = 𝑣)
4644, 45fneq12d 5185 . . . . . . . . . . . . 13 ((𝑤 = 𝑣𝑘 = 𝑓) → (𝑘 Fn 𝑤𝑓 Fn 𝑣))
47 simplr 504 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑘 = 𝑓)
48 simpr 109 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑢 = 𝑦)
4947, 48fveq12d 5396 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝑘𝑢) = (𝑓𝑦))
5047, 48reseq12d 4790 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝑘𝑢) = (𝑓𝑦))
5150fveq2d 5393 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝐹‘(𝑘𝑢)) = (𝐹‘(𝑓𝑦)))
5249, 51eqeq12d 2132 . . . . . . . . . . . . . 14 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → ((𝑘𝑢) = (𝐹‘(𝑘𝑢)) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
53 simpll 503 . . . . . . . . . . . . . 14 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑤 = 𝑣)
5452, 53cbvraldva2 2635 . . . . . . . . . . . . 13 ((𝑤 = 𝑣𝑘 = 𝑓) → (∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)) ↔ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5546, 54anbi12d 464 . . . . . . . . . . . 12 ((𝑤 = 𝑣𝑘 = 𝑓) → ((𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ (𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
5655cbvexdva 1881 . . . . . . . . . . 11 (𝑤 = 𝑣 → (∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ ∃𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
5756cbvralv 2631 . . . . . . . . . 10 (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5843, 57sylib 121 . . . . . . . . 9 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5958adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
6019, 26, 40, 42, 59tfrlemiex 6196 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
6160expr 372 . . . . . 6 ((𝜑𝑧 ∈ On) → (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
6261expcom 115 . . . . 5 (𝑧 ∈ On → (𝜑 → (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6362a2d 26 . . . 4 (𝑧 ∈ On → ((𝜑 → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → (𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6417, 63syl5bi 151 . . 3 (𝑧 ∈ On → (∀𝑤𝑧 (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → (𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6511, 16, 64tfis3 4470 . 2 (𝐶 ∈ On → (𝜑 → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
6665impcom 124 1 ((𝜑𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 947  wal 1314   = wceq 1316  wex 1453  wcel 1465  {cab 2103  wral 2393  wrex 2394  Vcvv 2660  cun 3039  {csn 3497  cop 3500  Oncon0 4255  cres 4511  Fun wfun 5087   Fn wfn 5088  cfv 5093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-recs 6170
This theorem is referenced by:  tfrlemi14d  6198  tfrexlem  6199
  Copyright terms: Public domain W3C validator