![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tposexg | GIF version |
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposexg | ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposssxp 5918 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
2 | dmexg 4644 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
3 | cnvexg 4905 | . . . . 5 ⊢ (dom 𝐹 ∈ V → ◡dom 𝐹 ∈ V) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ◡dom 𝐹 ∈ V) |
5 | p0ex 3979 | . . . 4 ⊢ {∅} ∈ V | |
6 | unexg 4224 | . . . 4 ⊢ ((◡dom 𝐹 ∈ V ∧ {∅} ∈ V) → (◡dom 𝐹 ∪ {∅}) ∈ V) | |
7 | 4, 5, 6 | sylancl 404 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (◡dom 𝐹 ∪ {∅}) ∈ V) |
8 | rnexg 4645 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
9 | xpexg 4500 | . . 3 ⊢ (((◡dom 𝐹 ∪ {∅}) ∈ V ∧ ran 𝐹 ∈ V) → ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) | |
10 | 7, 8, 9 | syl2anc 403 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) |
11 | ssexg 3937 | . 2 ⊢ ((tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∧ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) → tpos 𝐹 ∈ V) | |
12 | 1, 10, 11 | sylancr 405 | 1 ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 Vcvv 2610 ∪ cun 2980 ⊆ wss 2982 ∅c0 3267 {csn 3416 × cxp 4389 ◡ccnv 4390 dom cdm 4391 ran crn 4392 tpos ctpos 5913 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-nul 3924 ax-pow 3968 ax-pr 3992 ax-un 4216 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-mpt 3861 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-tpos 5914 |
This theorem is referenced by: tposex 5947 |
Copyright terms: Public domain | W3C validator |