ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12f GIF version

Theorem tz6.12f 5443
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.)
Hypothesis
Ref Expression
tz6.12f.1 𝑦𝐹
Assertion
Ref Expression
tz6.12f ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem tz6.12f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opeq2 3701 . . . . 5 (𝑧 = 𝑦 → ⟨𝐴, 𝑧⟩ = ⟨𝐴, 𝑦⟩)
21eleq1d 2206 . . . 4 (𝑧 = 𝑦 → (⟨𝐴, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
3 tz6.12f.1 . . . . . . 7 𝑦𝐹
43nfel2 2292 . . . . . 6 𝑦𝐴, 𝑧⟩ ∈ 𝐹
5 nfv 1508 . . . . . 6 𝑧𝐴, 𝑦⟩ ∈ 𝐹
64, 5, 2cbveu 2021 . . . . 5 (∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
76a1i 9 . . . 4 (𝑧 = 𝑦 → (∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹))
82, 7anbi12d 464 . . 3 (𝑧 = 𝑦 → ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)))
9 eqeq2 2147 . . 3 (𝑧 = 𝑦 → ((𝐹𝐴) = 𝑧 ↔ (𝐹𝐴) = 𝑦))
108, 9imbi12d 233 . 2 (𝑧 = 𝑦 → (((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑧) ↔ ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)))
11 tz6.12 5442 . 2 ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑧)
1210, 11chvarv 1907 1 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  ∃!weu 1997  wnfc 2266  cop 3525  cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-iota 5083  df-fv 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator