Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  unen GIF version

Theorem unen 6323
 Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
unen (((𝐴𝐵𝐶𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem unen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6258 . . 3 (𝐴𝐵 ↔ ∃𝑥 𝑥:𝐴1-1-onto𝐵)
2 bren 6258 . . 3 (𝐶𝐷 ↔ ∃𝑦 𝑦:𝐶1-1-onto𝐷)
3 eeanv 1823 . . . 4 (∃𝑥𝑦(𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) ↔ (∃𝑥 𝑥:𝐴1-1-onto𝐵 ∧ ∃𝑦 𝑦:𝐶1-1-onto𝐷))
4 vex 2577 . . . . . . . 8 𝑥 ∈ V
5 vex 2577 . . . . . . . 8 𝑦 ∈ V
64, 5unex 4203 . . . . . . 7 (𝑥𝑦) ∈ V
7 f1oun 5173 . . . . . . 7 (((𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝑥𝑦):(𝐴𝐶)–1-1-onto→(𝐵𝐷))
8 f1oen3g 6264 . . . . . . 7 (((𝑥𝑦) ∈ V ∧ (𝑥𝑦):(𝐴𝐶)–1-1-onto→(𝐵𝐷)) → (𝐴𝐶) ≈ (𝐵𝐷))
96, 7, 8sylancr 399 . . . . . 6 (((𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) ≈ (𝐵𝐷))
109ex 112 . . . . 5 ((𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
1110exlimivv 1792 . . . 4 (∃𝑥𝑦(𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
123, 11sylbir 129 . . 3 ((∃𝑥 𝑥:𝐴1-1-onto𝐵 ∧ ∃𝑦 𝑦:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
131, 2, 12syl2anb 279 . 2 ((𝐴𝐵𝐶𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
1413imp 119 1 (((𝐴𝐵𝐶𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) ≈ (𝐵𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   = wceq 1259  ∃wex 1397   ∈ wcel 1409  Vcvv 2574   ∪ cun 2942   ∩ cin 2943  ∅c0 3251   class class class wbr 3791  –1-1-onto→wf1o 4928   ≈ cen 6249 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-en 6252 This theorem is referenced by:  phplem2  6346  fiunsnnn  6368  frecfzennn  9361
 Copyright terms: Public domain W3C validator