![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unirnioo | GIF version |
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
unirnioo | ⊢ ℝ = ∪ ran (,) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioomax 9047 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
2 | ioof 9070 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
3 | ffn 5077 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
4 | 2, 3 | ax-mp 7 | . . . . 5 ⊢ (,) Fn (ℝ* × ℝ*) |
5 | mnfxr 7237 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
6 | pnfxr 7233 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
7 | fnovrn 5679 | . . . . 5 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,)) | |
8 | 4, 5, 6, 7 | mp3an 1269 | . . . 4 ⊢ (-∞(,)+∞) ∈ ran (,) |
9 | 1, 8 | eqeltrri 2153 | . . 3 ⊢ ℝ ∈ ran (,) |
10 | elssuni 3637 | . . 3 ⊢ (ℝ ∈ ran (,) → ℝ ⊆ ∪ ran (,)) | |
11 | 9, 10 | ax-mp 7 | . 2 ⊢ ℝ ⊆ ∪ ran (,) |
12 | frn 5083 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ) | |
13 | 2, 12 | ax-mp 7 | . . 3 ⊢ ran (,) ⊆ 𝒫 ℝ |
14 | sspwuni 3768 | . . 3 ⊢ (ran (,) ⊆ 𝒫 ℝ ↔ ∪ ran (,) ⊆ ℝ) | |
15 | 13, 14 | mpbi 143 | . 2 ⊢ ∪ ran (,) ⊆ ℝ |
16 | 11, 15 | eqssi 3016 | 1 ⊢ ℝ = ∪ ran (,) |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∈ wcel 1434 ⊆ wss 2974 𝒫 cpw 3390 ∪ cuni 3609 × cxp 4369 ran crn 4372 Fn wfn 4927 ⟶wf 4928 (class class class)co 5543 ℝcr 7042 +∞cpnf 7212 -∞cmnf 7213 ℝ*cxr 7214 (,)cioo 8987 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-pre-ltirr 7150 ax-pre-ltwlin 7151 ax-pre-lttrn 7152 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-id 4056 df-po 4059 df-iso 4060 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-fv 4940 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-pnf 7217 df-mnf 7218 df-xr 7219 df-ltxr 7220 df-le 7221 df-ioo 8991 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |