ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unpreima GIF version

Theorem unpreima 5319
Description: Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unpreima (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))

Proof of Theorem unpreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 4958 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 elpreima 5313 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ (𝐴𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵))))
3 elun 3111 . . . . . 6 (𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵)) ↔ (𝑥 ∈ (𝐹𝐴) ∨ 𝑥 ∈ (𝐹𝐵)))
4 elpreima 5313 . . . . . . 7 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴)))
5 elpreima 5313 . . . . . . 7 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
64, 5orbi12d 717 . . . . . 6 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐹𝐴) ∨ 𝑥 ∈ (𝐹𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))))
73, 6syl5bb 185 . . . . 5 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))))
8 elun 3111 . . . . . . 7 ((𝐹𝑥) ∈ (𝐴𝐵) ↔ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵))
98anbi2i 438 . . . . . 6 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵)))
10 andi 742 . . . . . 6 ((𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
119, 10bitri 177 . . . . 5 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
127, 11syl6rbbr 192 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ 𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵))))
132, 12bitrd 181 . . 3 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ (𝐴𝐵)) ↔ 𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵))))
1413eqrdv 2054 . 2 (𝐹 Fn dom 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))
151, 14sylbi 118 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wo 639   = wceq 1259  wcel 1409  cun 2942  ccnv 4371  dom cdm 4372  cima 4375  Fun wfun 4923   Fn wfn 4924  cfv 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-fv 4937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator