![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uz2mulcl | GIF version |
Description: Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.) |
Ref | Expression |
---|---|
uz2mulcl | ⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑀 · 𝑁) ∈ (ℤ≥‘2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 8761 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘2) → 𝑀 ∈ ℤ) | |
2 | eluzelz 8761 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
3 | zmulcl 8537 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
4 | 1, 2, 3 | syl2an 283 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑀 · 𝑁) ∈ ℤ) |
5 | eluz2b1 8821 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘2) ↔ (𝑀 ∈ ℤ ∧ 1 < 𝑀)) | |
6 | zre 8488 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
7 | 6 | anim1i 333 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (𝑀 ∈ ℝ ∧ 1 < 𝑀)) |
8 | 5, 7 | sylbi 119 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘2) → (𝑀 ∈ ℝ ∧ 1 < 𝑀)) |
9 | eluz2b1 8821 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | |
10 | zre 8488 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
11 | 10 | anim1i 333 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
12 | 9, 11 | sylbi 119 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
13 | mulgt1 8060 | . . . 4 ⊢ (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (1 < 𝑀 ∧ 1 < 𝑁)) → 1 < (𝑀 · 𝑁)) | |
14 | 13 | an4s 553 | . . 3 ⊢ (((𝑀 ∈ ℝ ∧ 1 < 𝑀) ∧ (𝑁 ∈ ℝ ∧ 1 < 𝑁)) → 1 < (𝑀 · 𝑁)) |
15 | 8, 12, 14 | syl2an 283 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → 1 < (𝑀 · 𝑁)) |
16 | eluz2b1 8821 | . 2 ⊢ ((𝑀 · 𝑁) ∈ (ℤ≥‘2) ↔ ((𝑀 · 𝑁) ∈ ℤ ∧ 1 < (𝑀 · 𝑁))) | |
17 | 4, 15, 16 | sylanbrc 408 | 1 ⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑀 · 𝑁) ∈ (ℤ≥‘2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1434 class class class wbr 3805 ‘cfv 4952 (class class class)co 5563 ℝcr 7094 1c1 7096 · cmul 7100 < clt 7267 2c2 8208 ℤcz 8484 ℤ≥cuz 8752 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7181 ax-resscn 7182 ax-1cn 7183 ax-1re 7184 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-mulrcl 7189 ax-addcom 7190 ax-mulcom 7191 ax-addass 7192 ax-mulass 7193 ax-distr 7194 ax-i2m1 7195 ax-0lt1 7196 ax-1rid 7197 ax-0id 7198 ax-rnegex 7199 ax-precex 7200 ax-cnre 7201 ax-pre-ltirr 7202 ax-pre-ltwlin 7203 ax-pre-lttrn 7204 ax-pre-ltadd 7206 ax-pre-mulgt0 7207 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-br 3806 df-opab 3860 df-mpt 3861 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-fv 4960 df-riota 5519 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 df-le 7273 df-sub 7400 df-neg 7401 df-inn 8159 df-2 8217 df-n0 8408 df-z 8485 df-uz 8753 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |