Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  uzdcinzz GIF version

Theorem uzdcinzz 13005
Description: An upperset of integers is decidable in the integers. Reformulation of eluzdc 9404. (Contributed by Jim Kingdon, 18-Apr-2020.) (Revised by BJ, 19-Feb-2022.)
Assertion
Ref Expression
uzdcinzz (𝑀 ∈ ℤ → (ℤ𝑀) DECIDin ℤ)

Proof of Theorem uzdcinzz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zlelttric 9099 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀𝑥𝑥 < 𝑀))
2 eluz 9339 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝑀) ↔ 𝑀𝑥))
32biimprd 157 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀𝑥𝑥 ∈ (ℤ𝑀)))
4 zltnle 9100 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀𝑥))
54ancoms 266 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀𝑥))
62notbid 656 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑥 ∈ (ℤ𝑀) ↔ ¬ 𝑀𝑥))
76biimprd 157 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑀𝑥 → ¬ 𝑥 ∈ (ℤ𝑀)))
85, 7sylbid 149 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 → ¬ 𝑥 ∈ (ℤ𝑀)))
93, 8orim12d 775 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀𝑥𝑥 < 𝑀) → (𝑥 ∈ (ℤ𝑀) ∨ ¬ 𝑥 ∈ (ℤ𝑀))))
101, 9mpd 13 . . 3 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝑀) ∨ ¬ 𝑥 ∈ (ℤ𝑀)))
1110ex 114 . 2 (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) ∨ ¬ 𝑥 ∈ (ℤ𝑀))))
1211decidr 13003 1 (𝑀 ∈ ℤ → (ℤ𝑀) DECIDin ℤ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  wcel 1480   class class class wbr 3929  cfv 5123   < clt 7800  cle 7801  cz 9054  cuz 9326   DECIDin wdcin 13000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-dcin 13001
This theorem is referenced by:  sumdc2  13006
  Copyright terms: Public domain W3C validator