ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vss GIF version

Theorem vss 3307
Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
vss (V ⊆ 𝐴𝐴 = V)

Proof of Theorem vss
StepHypRef Expression
1 ssv 3028 . . 3 𝐴 ⊆ V
21biantrur 297 . 2 (V ⊆ 𝐴 ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴))
3 eqss 3023 . 2 (𝐴 = V ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴))
42, 3bitr4i 185 1 (V ⊆ 𝐴𝐴 = V)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1285  Vcvv 2610  wss 2982
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-v 2612  df-in 2988  df-ss 2995
This theorem is referenced by:  vdif0im  3325
  Copyright terms: Public domain W3C validator