ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclgft GIF version

Theorem vtoclgft 2658
Description: Closed theorem form of vtoclgf 2666. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
vtoclgft (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴𝑉) → 𝜓)

Proof of Theorem vtoclgft
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 2619 . 2 (𝐴𝑉𝐴 ∈ V)
2 elisset 2622 . . . . 5 (𝐴 ∈ V → ∃𝑧 𝑧 = 𝐴)
323ad2ant3 962 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → ∃𝑧 𝑧 = 𝐴)
4 nfnfc1 2226 . . . . . . 7 𝑥𝑥𝐴
5 nfcvd 2224 . . . . . . . 8 (𝑥𝐴𝑥𝑧)
6 id 19 . . . . . . . 8 (𝑥𝐴𝑥𝐴)
75, 6nfeqd 2237 . . . . . . 7 (𝑥𝐴 → Ⅎ𝑥 𝑧 = 𝐴)
8 eqeq1 2089 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 = 𝐴𝑥 = 𝐴))
98a1i 9 . . . . . . 7 (𝑥𝐴 → (𝑧 = 𝑥 → (𝑧 = 𝐴𝑥 = 𝐴)))
104, 7, 9cbvexd 1845 . . . . . 6 (𝑥𝐴 → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴))
1110ad2antrr 472 . . . . 5 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑)) → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴))
12113adant3 959 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴))
133, 12mpbid 145 . . 3 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → ∃𝑥 𝑥 = 𝐴)
14 bi1 116 . . . . . . . . 9 ((𝜑𝜓) → (𝜑𝜓))
1514imim2i 12 . . . . . . . 8 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜑𝜓)))
1615com23 77 . . . . . . 7 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝜑 → (𝑥 = 𝐴𝜓)))
1716imp 122 . . . . . 6 (((𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝜑) → (𝑥 = 𝐴𝜓))
1817alanimi 1389 . . . . 5 ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) → ∀𝑥(𝑥 = 𝐴𝜓))
19183ad2ant2 961 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → ∀𝑥(𝑥 = 𝐴𝜓))
20 simp1r 964 . . . . 5 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → Ⅎ𝑥𝜓)
21 19.23t 1608 . . . . 5 (Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
2220, 21syl 14 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
2319, 22mpbid 145 . . 3 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → (∃𝑥 𝑥 = 𝐴𝜓))
2413, 23mpd 13 . 2 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → 𝜓)
251, 24syl3an3 1205 1 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴𝑉) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920  wal 1283   = wceq 1285  wnf 1390  wex 1422  wcel 1434  wnfc 2210  Vcvv 2610
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612
This theorem is referenced by:  vtocldf  2659
  Copyright terms: Public domain W3C validator