ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wessep GIF version

Theorem wessep 4327
Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.)
Assertion
Ref Expression
wessep (( E We 𝐴𝐵𝐴) → E We 𝐵)

Proof of Theorem wessep
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 2964 . . . . . . 7 (𝐵𝐴 → (𝑥𝐵𝑥𝐴))
2 ssel 2964 . . . . . . 7 (𝐵𝐴 → (𝑦𝐵𝑦𝐴))
3 ssel 2964 . . . . . . 7 (𝐵𝐴 → (𝑧𝐵𝑧𝐴))
41, 2, 33anim123d 1223 . . . . . 6 (𝐵𝐴 → ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝐴𝑦𝐴𝑧𝐴)))
54adantl 266 . . . . 5 (( E We 𝐴𝐵𝐴) → ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝐴𝑦𝐴𝑧𝐴)))
65imdistani 427 . . . 4 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)))
7 wetrep 4122 . . . . . 6 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
87adantlr 454 . . . . 5 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
9 epel 4054 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
10 epel 4054 . . . . . 6 (𝑦 E 𝑧𝑦𝑧)
119, 10anbi12i 441 . . . . 5 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
12 epel 4054 . . . . 5 (𝑥 E 𝑧𝑥𝑧)
138, 11, 123imtr4g 198 . . . 4 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
146, 13syl 14 . . 3 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1514ralrimivvva 2417 . 2 (( E We 𝐴𝐵𝐴) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
16 zfregfr 4323 . . 3 E Fr 𝐵
17 df-wetr 4096 . . 3 ( E We 𝐵 ↔ ( E Fr 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
1816, 17mpbiran 856 . 2 ( E We 𝐵 ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1915, 18sylibr 141 1 (( E We 𝐴𝐵𝐴) → E We 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 894  wcel 1407  wral 2321  wss 2942   class class class wbr 3789   E cep 4049   Fr wfr 4090   We wwe 4092
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969  ax-setind 4287
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ral 2326  df-v 2574  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-br 3790  df-opab 3844  df-eprel 4051  df-frfor 4093  df-frind 4094  df-wetr 4096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator