ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wetrep GIF version

Theorem wetrep 4144
Description: An epsilon well-ordering is a transitive relation. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
wetrep (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem wetrep
StepHypRef Expression
1 df-3an 922 . . 3 ((𝑥𝐴𝑦𝐴𝑧𝐴) ↔ ((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴))
2 df-wetr 4118 . . . . . . . . 9 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
32simprbi 269 . . . . . . . 8 ( E We 𝐴 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
43r19.21bi 2455 . . . . . . 7 (( E We 𝐴𝑥𝐴) → ∀𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
54r19.21bi 2455 . . . . . 6 ((( E We 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ∀𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
65anasss 391 . . . . 5 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
76r19.21bi 2455 . . . 4 ((( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
87anasss 391 . . 3 (( E We 𝐴 ∧ ((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
91, 8sylan2b 281 . 2 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
10 epel 4076 . . 3 (𝑥 E 𝑦𝑥𝑦)
11 epel 4076 . . 3 (𝑦 E 𝑧𝑦𝑧)
1210, 11anbi12i 448 . 2 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
13 epel 4076 . 2 (𝑥 E 𝑧𝑥𝑧)
149, 12, 133imtr3g 202 1 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920  wcel 1434  wral 2353   class class class wbr 3806   E cep 4071   Fr wfr 4112   We wwe 4114
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-v 2613  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-br 3807  df-opab 3861  df-eprel 4073  df-wetr 4118
This theorem is referenced by:  wessep  4349
  Copyright terms: Public domain W3C validator