Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xor2dc GIF version

Theorem xor2dc 1297
 Description: Two ways to express "exclusive or" between decidable propositions. (Contributed by Jim Kingdon, 17-Apr-2018.)
Assertion
Ref Expression
xor2dc (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))))

Proof of Theorem xor2dc
StepHypRef Expression
1 xor3dc 1294 . . . 4 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))))
21imp 119 . . 3 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓)))
3 pm5.17dc 821 . . . 4 (DECID 𝜓 → (((𝜑𝜓) ∧ ¬ (𝜑𝜓)) ↔ (𝜑 ↔ ¬ 𝜓)))
43adantl 266 . . 3 ((DECID 𝜑DECID 𝜓) → (((𝜑𝜓) ∧ ¬ (𝜑𝜓)) ↔ (𝜑 ↔ ¬ 𝜓)))
52, 4bitr4d 184 . 2 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))))
65ex 112 1 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 101   ↔ wb 102   ∨ wo 639  DECID wdc 753 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640 This theorem depends on definitions:  df-bi 114  df-dc 754 This theorem is referenced by:  xornbidc  1298
 Copyright terms: Public domain W3C validator