ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2 GIF version

Theorem xp2 5830
Description: Representation of cross product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
xp2 (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xp2
StepHypRef Expression
1 elxp7 5828 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)))
21abbi2i 2194 . 2 (𝐴 × 𝐵) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵))}
3 df-rab 2358 . 2 {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)} = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵))}
42, 3eqtr4i 2105 1 (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)}
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1285  wcel 1434  {cab 2068  {crab 2353  Vcvv 2602   × cxp 4369  cfv 4932  1st c1st 5796  2nd c2nd 5797
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fo 4938  df-fv 4940  df-1st 5798  df-2nd 5799
This theorem is referenced by:  unielxp  5831
  Copyright terms: Public domain W3C validator