Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpen GIF version

Theorem xpen 6408
 Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.)
Assertion
Ref Expression
xpen ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))

Proof of Theorem xpen
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6316 . . . 4 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
21biimpi 118 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
32adantr 270 . 2 ((𝐴𝐵𝐶𝐷) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
4 bren 6316 . . . . 5 (𝐶𝐷 ↔ ∃𝑔 𝑔:𝐶1-1-onto𝐷)
54biimpi 118 . . . 4 (𝐶𝐷 → ∃𝑔 𝑔:𝐶1-1-onto𝐷)
65ad2antlr 473 . . 3 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) → ∃𝑔 𝑔:𝐶1-1-onto𝐷)
7 relen 6313 . . . . . . 7 Rel ≈
87brrelexi 4430 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
97brrelexi 4430 . . . . . 6 (𝐶𝐷𝐶 ∈ V)
10 xpexg 4500 . . . . . 6 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 × 𝐶) ∈ V)
118, 9, 10syl2an 283 . . . . 5 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ∈ V)
1211ad2antrr 472 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝐴 × 𝐶) ∈ V)
13 simplr 497 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐴1-1-onto𝐵)
14 f1ofn 5179 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓 Fn 𝐴)
15 dffn5im 5272 . . . . . . . 8 (𝑓 Fn 𝐴𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
1614, 15syl 14 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
17 f1oeq1 5169 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)) → (𝑓:𝐴1-1-onto𝐵 ↔ (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵))
1813, 16, 173syl 17 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑓:𝐴1-1-onto𝐵 ↔ (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵))
1913, 18mpbid 145 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵)
20 simpr 108 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐶1-1-onto𝐷)
21 f1ofn 5179 . . . . . . . 8 (𝑔:𝐶1-1-onto𝐷𝑔 Fn 𝐶)
22 dffn5im 5272 . . . . . . . 8 (𝑔 Fn 𝐶𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)))
2321, 22syl 14 . . . . . . 7 (𝑔:𝐶1-1-onto𝐷𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)))
24 f1oeq1 5169 . . . . . . 7 (𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)) → (𝑔:𝐶1-1-onto𝐷 ↔ (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷))
2520, 23, 243syl 17 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑔:𝐶1-1-onto𝐷 ↔ (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷))
2620, 25mpbid 145 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷)
2719, 26xpf1o 6407 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑥𝐴, 𝑦𝐶 ↦ ⟨(𝑓𝑥), (𝑔𝑦)⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷))
28 f1oeng 6326 . . . 4 (((𝐴 × 𝐶) ∈ V ∧ (𝑥𝐴, 𝑦𝐶 ↦ ⟨(𝑓𝑥), (𝑔𝑦)⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
2912, 27, 28syl2anc 403 . . 3 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
306, 29exlimddv 1821 . 2 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
313, 30exlimddv 1821 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   = wceq 1285  ∃wex 1422   ∈ wcel 1434  Vcvv 2610  ⟨cop 3419   class class class wbr 3805   ↦ cmpt 3859   × cxp 4389   Fn wfn 4947  –1-1-onto→wf1o 4951  ‘cfv 4952   ↦ cmpt2 5566   ≈ cen 6307 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-en 6310 This theorem is referenced by:  xpnnen  10832  xpomen  10833
 Copyright terms: Public domain W3C validator