ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpopth GIF version

Theorem xpopth 6042
Description: An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.)
Assertion
Ref Expression
xpopth ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))

Proof of Theorem xpopth
StepHypRef Expression
1 1st2nd2 6041 . . 3 (𝐴 ∈ (𝐶 × 𝐷) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 1st2nd2 6041 . . 3 (𝐵 ∈ (𝑅 × 𝑆) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
31, 2eqeqan12d 2133 . 2 ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (𝐴 = 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩))
4 1stexg 6033 . . . 4 (𝐴 ∈ (𝐶 × 𝐷) → (1st𝐴) ∈ V)
5 2ndexg 6034 . . . 4 (𝐴 ∈ (𝐶 × 𝐷) → (2nd𝐴) ∈ V)
6 opthg 4130 . . . 4 (((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V) → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
74, 5, 6syl2anc 408 . . 3 (𝐴 ∈ (𝐶 × 𝐷) → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
87adantr 274 . 2 ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
93, 8bitr2d 188 1 ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  Vcvv 2660  cop 3500   × cxp 4507  cfv 5093  1st c1st 6004  2nd c2nd 6005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-sbc 2883  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fo 5099  df-fv 5101  df-1st 6006  df-2nd 6007
This theorem is referenced by:  xmetxp  12603
  Copyright terms: Public domain W3C validator