ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltnsym GIF version

Theorem xrltnsym 9547
Description: Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrltnsym ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))

Proof of Theorem xrltnsym
StepHypRef Expression
1 elxr 9531 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 9531 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 ltnsym 7818 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4 rexr 7779 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
5 pnfnlt 9541 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
64, 5syl 14 . . . . . . 7 (𝐴 ∈ ℝ → ¬ +∞ < 𝐴)
76adantr 274 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬ +∞ < 𝐴)
8 breq1 3902 . . . . . . 7 (𝐵 = +∞ → (𝐵 < 𝐴 ↔ +∞ < 𝐴))
98adantl 275 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐴 ↔ +∞ < 𝐴))
107, 9mtbird 647 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴)
1110a1d 22 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
12 nltmnf 9542 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
134, 12syl 14 . . . . . . 7 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
1413adantr 274 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
15 breq2 3903 . . . . . . 7 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
1615adantl 275 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
1714, 16mtbird 647 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
1817pm2.21d 593 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
193, 11, 183jaodan 1269 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
20 pnfnlt 9541 . . . . . . 7 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
2120adantl 275 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
22 breq1 3902 . . . . . . 7 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
2322adantr 274 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
2421, 23mtbird 647 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 < 𝐵)
2524pm2.21d 593 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
262, 25sylan2br 286 . . 3 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
27 rexr 7779 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
28 nltmnf 9542 . . . . . . . 8 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
2927, 28syl 14 . . . . . . 7 (𝐵 ∈ ℝ → ¬ 𝐵 < -∞)
3029adantl 275 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 < -∞)
31 breq2 3903 . . . . . . 7 (𝐴 = -∞ → (𝐵 < 𝐴𝐵 < -∞))
3231adantr 274 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < -∞))
3330, 32mtbird 647 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 < 𝐴)
3433a1d 22 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
35 mnfxr 7790 . . . . . . . 8 -∞ ∈ ℝ*
36 pnfnlt 9541 . . . . . . . 8 (-∞ ∈ ℝ* → ¬ +∞ < -∞)
3735, 36ax-mp 5 . . . . . . 7 ¬ +∞ < -∞
38 breq12 3904 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = -∞) → (𝐵 < 𝐴 ↔ +∞ < -∞))
3937, 38mtbiri 649 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = -∞) → ¬ 𝐵 < 𝐴)
4039ancoms 266 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴)
4140a1d 22 . . . 4 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
42 xrltnr 9534 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
4335, 42ax-mp 5 . . . . . 6 ¬ -∞ < -∞
44 breq12 3904 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
4543, 44mtbiri 649 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
4645pm2.21d 593 . . . 4 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4734, 41, 463jaodan 1269 . . 3 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4819, 26, 473jaoian 1268 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
491, 2, 48syl2anb 289 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 946   = wceq 1316  wcel 1465   class class class wbr 3899  cr 7587  +∞cpnf 7765  -∞cmnf 7766  *cxr 7767   < clt 7768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-pre-ltirr 7700  ax-pre-lttrn 7702
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-rab 2402  df-v 2662  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-xp 4515  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773
This theorem is referenced by:  xrltnsym2  9548  xrltle  9552
  Copyright terms: Public domain W3C validator