ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdceq GIF version

Theorem zdceq 9094
Description: Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zdceq ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)

Proof of Theorem zdceq
StepHypRef Expression
1 ztri3or 9065 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2 zre 9026 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3 ltne 7817 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
43necomd 2371 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
5 olc 685 . . . . . . . 8 (𝐴𝐵 → (𝐴 = 𝐵𝐴𝐵))
6 dcne 2296 . . . . . . . 8 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))
75, 6sylibr 133 . . . . . . 7 (𝐴𝐵DECID 𝐴 = 𝐵)
84, 7syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → DECID 𝐴 = 𝐵)
98ex 114 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
109adantr 274 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
112, 10sylan 281 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
12 orc 686 . . . . 5 (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴𝐵))
1312, 6sylibr 133 . . . 4 (𝐴 = 𝐵DECID 𝐴 = 𝐵)
1413a1i 9 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵DECID 𝐴 = 𝐵))
15 zre 9026 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
16 ltne 7817 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴𝐵)
1716, 7syl 14 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵)
1817ex 114 . . . . 5 (𝐵 ∈ ℝ → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
1915, 18syl 14 . . . 4 (𝐵 ∈ ℤ → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
2019adantl 275 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
2111, 14, 203jaod 1267 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 = 𝐵))
221, 21mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 682  DECID wdc 804  w3o 946   = wceq 1316  wcel 1465  wne 2285   class class class wbr 3899  cr 7587   < clt 7768  cz 9022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023
This theorem is referenced by:  nn0n0n1ge2b  9098  nn0lt2  9100  prime  9118  elnn1uz2  9369  iseqf1olemqcl  10227  iseqf1olemnab  10229  iseqf1olemab  10230  seq3f1olemstep  10242  exp3val  10263  hashfzp1  10538  dvdsdc  11428  zdvdsdc  11441  dvdsabseq  11472  alzdvds  11479  fzo0dvdseq  11482  gcdmndc  11564  gcdsupex  11573  gcdsupcl  11574  gcd0id  11594  gcdaddm  11599  dfgcd2  11629  gcdmultiplez  11636  dvdssq  11646  nn0seqcvgd  11649  algcvgblem  11657  eucalgval2  11661  lcmmndc  11670  lcmdvds  11687  lcmid  11688  mulgcddvds  11702  cncongr2  11712  isprm3  11726  isprm4  11727  prm2orodd  11734  rpexp  11758  phivalfi  11815  phiprmpw  11825  phimullem  11828  hashgcdeq  11831  ennnfonelemim  11864  strsetsid  11919  nninffeq  13143
  Copyright terms: Public domain W3C validator