ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdclt GIF version

Theorem zdclt 8506
Description: Integer < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
zdclt ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵)

Proof of Theorem zdclt
StepHypRef Expression
1 ztri3or 8475 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2 zre 8436 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3 zre 8436 . . 3 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
4 orc 666 . . . . . 6 (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
5 df-dc 777 . . . . . 6 (DECID 𝐴 < 𝐵 ↔ (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
64, 5sylibr 132 . . . . 5 (𝐴 < 𝐵DECID 𝐴 < 𝐵)
76a1i 9 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵DECID 𝐴 < 𝐵))
8 ltnr 7255 . . . . . . . . 9 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
98adantr 270 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐴)
10 breq2 3797 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
1110adantl 271 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐴 < 𝐴𝐴 < 𝐵))
129, 11mtbid 630 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
13 olc 665 . . . . . . . 8 𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
1413, 5sylibr 132 . . . . . . 7 𝐴 < 𝐵DECID 𝐴 < 𝐵)
1512, 14syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → DECID 𝐴 < 𝐵)
1615ex 113 . . . . 5 (𝐴 ∈ ℝ → (𝐴 = 𝐵DECID 𝐴 < 𝐵))
1716adantr 270 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵DECID 𝐴 < 𝐵))
18 ltnsym 7264 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
1918ancoms 264 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
2019, 14syl6 33 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴DECID 𝐴 < 𝐵))
217, 17, 203jaod 1236 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 < 𝐵))
222, 3, 21syl2an 283 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 < 𝐵))
231, 22mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  DECID wdc 776  w3o 919   = wceq 1285  wcel 1434   class class class wbr 3793  cr 7042   < clt 7215  cz 8432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-inn 8107  df-n0 8356  df-z 8433
This theorem is referenced by:  fztri3or  9134  modifeq2int  9468  modsumfzodifsn  9478  expival  9575
  Copyright terms: Public domain W3C validator