ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zesq GIF version

Theorem zesq 10403
Description: An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zesq (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ))

Proof of Theorem zesq
StepHypRef Expression
1 zcn 9052 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 sqval 10344 . . . . . . 7 (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁))
31, 2syl 14 . . . . . 6 (𝑁 ∈ ℤ → (𝑁↑2) = (𝑁 · 𝑁))
43oveq1d 5782 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) / 2) = ((𝑁 · 𝑁) / 2))
5 2cnd 8786 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
6 2ap0 8806 . . . . . . 7 2 # 0
76a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 # 0)
81, 1, 5, 7divassapd 8579 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) / 2) = (𝑁 · (𝑁 / 2)))
94, 8eqtrd 2170 . . . 4 (𝑁 ∈ ℤ → ((𝑁↑2) / 2) = (𝑁 · (𝑁 / 2)))
109adantr 274 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁↑2) / 2) = (𝑁 · (𝑁 / 2)))
11 zmulcl 9100 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 · (𝑁 / 2)) ∈ ℤ)
1210, 11eqeltrd 2214 . 2 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁↑2) / 2) ∈ ℤ)
131adantr 274 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 𝑁 ∈ ℂ)
14 sqcl 10347 . . . . . . . . . . 11 (𝑁 ∈ ℂ → (𝑁↑2) ∈ ℂ)
1513, 14syl 14 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁↑2) ∈ ℂ)
16 peano2cn 7890 . . . . . . . . . 10 ((𝑁↑2) ∈ ℂ → ((𝑁↑2) + 1) ∈ ℂ)
1715, 16syl 14 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁↑2) + 1) ∈ ℂ)
1817halfcld 8957 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + 1) / 2) ∈ ℂ)
1918, 13pncand 8067 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((((𝑁↑2) + 1) / 2) + 𝑁) − 𝑁) = (((𝑁↑2) + 1) / 2))
20 binom21 10397 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 + 1)↑2) = (((𝑁↑2) + (2 · 𝑁)) + 1))
2113, 20syl 14 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1)↑2) = (((𝑁↑2) + (2 · 𝑁)) + 1))
22 peano2cn 7890 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
2313, 22syl 14 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 + 1) ∈ ℂ)
24 sqval 10344 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℂ → ((𝑁 + 1)↑2) = ((𝑁 + 1) · (𝑁 + 1)))
2523, 24syl 14 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1)↑2) = ((𝑁 + 1) · (𝑁 + 1)))
26 2cn 8784 . . . . . . . . . . . . . 14 2 ∈ ℂ
27 mulcl 7740 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) ∈ ℂ)
2826, 13, 27sylancr 410 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (2 · 𝑁) ∈ ℂ)
29 1cnd 7775 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 1 ∈ ℂ)
3015, 28, 29add32d 7923 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + (2 · 𝑁)) + 1) = (((𝑁↑2) + 1) + (2 · 𝑁)))
3121, 25, 303eqtr3d 2178 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · (𝑁 + 1)) = (((𝑁↑2) + 1) + (2 · 𝑁)))
3231oveq1d 5782 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) · (𝑁 + 1)) / 2) = ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2))
33 2cnd 8786 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 2 ∈ ℂ)
346a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 2 # 0)
3523, 23, 33, 34divassapd 8579 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) · (𝑁 + 1)) / 2) = ((𝑁 + 1) · ((𝑁 + 1) / 2)))
3617, 28, 33, 34divdirapd 8582 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2) = ((((𝑁↑2) + 1) / 2) + ((2 · 𝑁) / 2)))
3713, 33, 34divcanap3d 8548 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((2 · 𝑁) / 2) = 𝑁)
3837oveq2d 5783 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) / 2) + ((2 · 𝑁) / 2)) = ((((𝑁↑2) + 1) / 2) + 𝑁))
3936, 38eqtrd 2170 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2) = ((((𝑁↑2) + 1) / 2) + 𝑁))
4032, 35, 393eqtr3d 2178 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) = ((((𝑁↑2) + 1) / 2) + 𝑁))
41 peano2z 9083 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
42 zmulcl 9100 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) ∈ ℤ)
4341, 42sylan 281 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) ∈ ℤ)
4440, 43eqeltrrd 2215 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) / 2) + 𝑁) ∈ ℤ)
45 simpl 108 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 𝑁 ∈ ℤ)
4644, 45zsubcld 9171 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((((𝑁↑2) + 1) / 2) + 𝑁) − 𝑁) ∈ ℤ)
4719, 46eqeltrrd 2215 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + 1) / 2) ∈ ℤ)
4847ex 114 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁↑2) + 1) / 2) ∈ ℤ))
4948con3d 620 . . . 4 (𝑁 ∈ ℤ → (¬ (((𝑁↑2) + 1) / 2) ∈ ℤ → ¬ ((𝑁 + 1) / 2) ∈ ℤ))
50 zsqcl 10356 . . . . 5 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
51 zeo2 9150 . . . . 5 ((𝑁↑2) ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ ↔ ¬ (((𝑁↑2) + 1) / 2) ∈ ℤ))
5250, 51syl 14 . . . 4 (𝑁 ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ ↔ ¬ (((𝑁↑2) + 1) / 2) ∈ ℤ))
53 zeo2 9150 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))
5449, 52, 533imtr4d 202 . . 3 (𝑁 ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ → (𝑁 / 2) ∈ ℤ))
5554imp 123 . 2 ((𝑁 ∈ ℤ ∧ ((𝑁↑2) / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℤ)
5612, 55impbida 585 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480   class class class wbr 3924  (class class class)co 5767  cc 7611  0cc0 7613  1c1 7614   + caddc 7616   · cmul 7618  cmin 7926   # cap 8336   / cdiv 8425  2c2 8764  cz 9047  cexp 10285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-seqfrec 10212  df-exp 10286
This theorem is referenced by:  nnesq  10404  sqrt2irrlem  11828
  Copyright terms: Public domain W3C validator