Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfpair2 GIF version

Theorem zfpair2 3967
 Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr 3966. (Contributed by NM, 14-Nov-2006.)
Assertion
Ref Expression
zfpair2 {𝑥, 𝑦} ∈ V

Proof of Theorem zfpair2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-pr 3966 . . . 4 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
21bm1.3ii 3901 . . 3 𝑧𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦))
3 dfcleq 2076 . . . . 5 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}))
4 vex 2605 . . . . . . . 8 𝑤 ∈ V
54elpr 3421 . . . . . . 7 (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥𝑤 = 𝑦))
65bibi2i 225 . . . . . 6 ((𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
76albii 1400 . . . . 5 (∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ ∀𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
83, 7bitri 182 . . . 4 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
98exbii 1537 . . 3 (∃𝑧 𝑧 = {𝑥, 𝑦} ↔ ∃𝑧𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
102, 9mpbir 144 . 2 𝑧 𝑧 = {𝑥, 𝑦}
1110issetri 2609 1 {𝑥, 𝑦} ∈ V
 Colors of variables: wff set class Syntax hints:   ↔ wb 103   ∨ wo 662  ∀wal 1283   = wceq 1285  ∃wex 1422   ∈ wcel 1434  Vcvv 2602  {cpr 3401 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pr 3966 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-sn 3406  df-pr 3407 This theorem is referenced by:  prexg  3968  onintexmid  4317  funopg  4958
 Copyright terms: Public domain W3C validator