ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zindd GIF version

Theorem zindd 9169
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
zindd.1 (𝑥 = 0 → (𝜑𝜓))
zindd.2 (𝑥 = 𝑦 → (𝜑𝜒))
zindd.3 (𝑥 = (𝑦 + 1) → (𝜑𝜏))
zindd.4 (𝑥 = -𝑦 → (𝜑𝜃))
zindd.5 (𝑥 = 𝐴 → (𝜑𝜂))
zindd.6 (𝜁𝜓)
zindd.7 (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))
zindd.8 (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))
Assertion
Ref Expression
zindd (𝜁 → (𝐴 ∈ ℤ → 𝜂))
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥   𝜂,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥   𝑥,𝑦,𝜁
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem zindd
StepHypRef Expression
1 znegcl 9085 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
2 elznn0nn 9068 . . . . . . 7 (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)))
31, 2sylib 121 . . . . . 6 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)))
4 simpr 109 . . . . . . 7 ((-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ) → --𝑦 ∈ ℕ)
54orim2i 750 . . . . . 6 ((-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)) → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ))
63, 5syl 14 . . . . 5 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ))
7 zcn 9059 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
87negnegd 8064 . . . . . . 7 (𝑦 ∈ ℤ → --𝑦 = 𝑦)
98eleq1d 2208 . . . . . 6 (𝑦 ∈ ℤ → (--𝑦 ∈ ℕ ↔ 𝑦 ∈ ℕ))
109orbi2d 779 . . . . 5 (𝑦 ∈ ℤ → ((-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ) ↔ (-𝑦 ∈ ℕ0𝑦 ∈ ℕ)))
116, 10mpbid 146 . . . 4 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0𝑦 ∈ ℕ))
12 zindd.1 . . . . . . . 8 (𝑥 = 0 → (𝜑𝜓))
1312imbi2d 229 . . . . . . 7 (𝑥 = 0 → ((𝜁𝜑) ↔ (𝜁𝜓)))
14 zindd.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
1514imbi2d 229 . . . . . . 7 (𝑥 = 𝑦 → ((𝜁𝜑) ↔ (𝜁𝜒)))
16 zindd.3 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝜑𝜏))
1716imbi2d 229 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝜁𝜑) ↔ (𝜁𝜏)))
18 zindd.4 . . . . . . . 8 (𝑥 = -𝑦 → (𝜑𝜃))
1918imbi2d 229 . . . . . . 7 (𝑥 = -𝑦 → ((𝜁𝜑) ↔ (𝜁𝜃)))
20 zindd.6 . . . . . . 7 (𝜁𝜓)
21 zindd.7 . . . . . . . . 9 (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))
2221com12 30 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝜁 → (𝜒𝜏)))
2322a2d 26 . . . . . . 7 (𝑦 ∈ ℕ0 → ((𝜁𝜒) → (𝜁𝜏)))
2413, 15, 17, 19, 20, 23nn0ind 9165 . . . . . 6 (-𝑦 ∈ ℕ0 → (𝜁𝜃))
2524com12 30 . . . . 5 (𝜁 → (-𝑦 ∈ ℕ0𝜃))
26 nnnn0 8984 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
2713, 15, 17, 15, 20, 23nn0ind 9165 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝜁𝜒))
2826, 27syl 14 . . . . . . 7 (𝑦 ∈ ℕ → (𝜁𝜒))
2928com12 30 . . . . . 6 (𝜁 → (𝑦 ∈ ℕ → 𝜒))
30 zindd.8 . . . . . 6 (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))
3129, 30mpdd 41 . . . . 5 (𝜁 → (𝑦 ∈ ℕ → 𝜃))
3225, 31jaod 706 . . . 4 (𝜁 → ((-𝑦 ∈ ℕ0𝑦 ∈ ℕ) → 𝜃))
3311, 32syl5 32 . . 3 (𝜁 → (𝑦 ∈ ℤ → 𝜃))
3433ralrimiv 2504 . 2 (𝜁 → ∀𝑦 ∈ ℤ 𝜃)
35 znegcl 9085 . . . . 5 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
36 negeq 7955 . . . . . . . . 9 (𝑦 = -𝑥 → -𝑦 = --𝑥)
37 zcn 9059 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3837negnegd 8064 . . . . . . . . 9 (𝑥 ∈ ℤ → --𝑥 = 𝑥)
3936, 38sylan9eqr 2194 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → -𝑦 = 𝑥)
4039eqcomd 2145 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦)
4140, 18syl 14 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑𝜃))
4241bicomd 140 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜃𝜑))
4335, 42rspcdv 2792 . . . 4 (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ 𝜃𝜑))
4443com12 30 . . 3 (∀𝑦 ∈ ℤ 𝜃 → (𝑥 ∈ ℤ → 𝜑))
4544ralrimiv 2504 . 2 (∀𝑦 ∈ ℤ 𝜃 → ∀𝑥 ∈ ℤ 𝜑)
46 zindd.5 . . 3 (𝑥 = 𝐴 → (𝜑𝜂))
4746rspccv 2786 . 2 (∀𝑥 ∈ ℤ 𝜑 → (𝐴 ∈ ℤ → 𝜂))
4834, 45, 473syl 17 1 (𝜁 → (𝐴 ∈ ℤ → 𝜂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  wral 2416  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   + caddc 7623  -cneg 7934  cn 8720  0cn0 8977  cz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by:  efexp  11388
  Copyright terms: Public domain W3C validator