Step | Hyp | Ref
| Expression |
1 | | unrab 3251 |
. . 3
⊢ ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) =
{𝑧 ∈ ℤ ∣
(𝑧 ∈ ℕ ∨
-𝑧 ∈
ℕ0)} |
2 | | nnssz 8501 |
. . . . . 6
⊢ ℕ
⊆ ℤ |
3 | | dfss1 3186 |
. . . . . 6
⊢ (ℕ
⊆ ℤ ↔ (ℤ ∩ ℕ) = ℕ) |
4 | 2, 3 | mpbi 143 |
. . . . 5
⊢ (ℤ
∩ ℕ) = ℕ |
5 | | dfin5 2989 |
. . . . 5
⊢ (ℤ
∩ ℕ) = {𝑧 ∈
ℤ ∣ 𝑧 ∈
ℕ} |
6 | 4, 5 | eqtr3i 2105 |
. . . 4
⊢ ℕ =
{𝑧 ∈ ℤ ∣
𝑧 ∈
ℕ} |
7 | 6 | uneq1i 3132 |
. . 3
⊢ (ℕ
∪ {𝑧 ∈ ℤ
∣ -𝑧 ∈
ℕ0}) = ({𝑧
∈ ℤ ∣ 𝑧
∈ ℕ} ∪ {𝑧
∈ ℤ ∣ -𝑧
∈ ℕ0}) |
8 | | rabid2 2535 |
. . . 4
⊢ (ℤ
= {𝑧 ∈ ℤ ∣
(𝑧 ∈ ℕ ∨
-𝑧 ∈
ℕ0)} ↔ ∀𝑧 ∈ ℤ (𝑧 ∈ ℕ ∨ -𝑧 ∈
ℕ0)) |
9 | | elznn 8500 |
. . . . 5
⊢ (𝑧 ∈ ℤ ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ ℕ ∨ -𝑧 ∈
ℕ0))) |
10 | 9 | simprbi 269 |
. . . 4
⊢ (𝑧 ∈ ℤ → (𝑧 ∈ ℕ ∨ -𝑧 ∈
ℕ0)) |
11 | 8, 10 | mprgbir 2426 |
. . 3
⊢ ℤ =
{𝑧 ∈ ℤ ∣
(𝑧 ∈ ℕ ∨
-𝑧 ∈
ℕ0)} |
12 | 1, 7, 11 | 3eqtr4ri 2114 |
. 2
⊢ ℤ =
(ℕ ∪ {𝑧 ∈
ℤ ∣ -𝑧 ∈
ℕ0}) |
13 | | nnex 8164 |
. . . 4
⊢ ℕ
∈ V |
14 | 13 | enref 6333 |
. . 3
⊢ ℕ
≈ ℕ |
15 | | zex 8493 |
. . . . . 6
⊢ ℤ
∈ V |
16 | 15 | rabex 3942 |
. . . . 5
⊢ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}
∈ V |
17 | | nn0ex 8413 |
. . . . 5
⊢
ℕ0 ∈ V |
18 | | negeq 7420 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → -𝑧 = -𝑥) |
19 | 18 | eleq1d 2151 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (-𝑧 ∈ ℕ0 ↔ -𝑥 ∈
ℕ0)) |
20 | 19 | elrab 2757 |
. . . . . 6
⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ↔ (𝑥 ∈ ℤ ∧ -𝑥 ∈
ℕ0)) |
21 | 20 | simprbi 269 |
. . . . 5
⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → -𝑥 ∈
ℕ0) |
22 | | nn0negz 8518 |
. . . . . 6
⊢ (𝑦 ∈ ℕ0
→ -𝑦 ∈
ℤ) |
23 | | nn0cn 8417 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
24 | 23 | negnegd 7529 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ0
→ --𝑦 = 𝑦) |
25 | 24 | eleq1d 2151 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ0
→ (--𝑦 ∈
ℕ0 ↔ 𝑦 ∈
ℕ0)) |
26 | 25 | ibir 175 |
. . . . . 6
⊢ (𝑦 ∈ ℕ0
→ --𝑦 ∈
ℕ0) |
27 | | negeq 7420 |
. . . . . . . 8
⊢ (𝑧 = -𝑦 → -𝑧 = --𝑦) |
28 | 27 | eleq1d 2151 |
. . . . . . 7
⊢ (𝑧 = -𝑦 → (-𝑧 ∈ ℕ0 ↔ --𝑦 ∈
ℕ0)) |
29 | 28 | elrab 2757 |
. . . . . 6
⊢ (-𝑦 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ↔ (-𝑦 ∈ ℤ ∧ --𝑦 ∈
ℕ0)) |
30 | 22, 26, 29 | sylanbrc 408 |
. . . . 5
⊢ (𝑦 ∈ ℕ0
→ -𝑦 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈
ℕ0}) |
31 | | elrabi 2754 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → 𝑥 ∈
ℤ) |
32 | 31 | adantr 270 |
. . . . . . 7
⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0)
→ 𝑥 ∈
ℤ) |
33 | 32 | zcnd 8603 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0)
→ 𝑥 ∈
ℂ) |
34 | 23 | adantl 271 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℂ) |
35 | | negcon2 7480 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
36 | 33, 34, 35 | syl2anc 403 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0)
→ (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
37 | 16, 17, 21, 30, 36 | en3i 6339 |
. . . 4
⊢ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}
≈ ℕ0 |
38 | | nn0ennn 9567 |
. . . 4
⊢
ℕ0 ≈ ℕ |
39 | 37, 38 | entri 6354 |
. . 3
⊢ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}
≈ ℕ |
40 | | inrab2 3253 |
. . . 4
⊢ ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}
∩ ℕ) = {𝑧 ∈
(ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} |
41 | | incom 3174 |
. . . 4
⊢ ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}
∩ ℕ) = (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈
ℕ0}) |
42 | | rabeq0 3290 |
. . . . 5
⊢ ({𝑧 ∈ (ℤ ∩ ℕ)
∣ -𝑧 ∈
ℕ0} = ∅ ↔ ∀𝑧 ∈ (ℤ ∩ ℕ) ¬ -𝑧 ∈
ℕ0) |
43 | | 0red 7234 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 0 ∈ ℝ) |
44 | | simpl 107 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 𝑧 ∈
ℕ) |
45 | 44 | nnred 8171 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 𝑧 ∈
ℝ) |
46 | | nngt0 8183 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℕ → 0 <
𝑧) |
47 | 46 | adantr 270 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 0 < 𝑧) |
48 | | nn0ge0 8432 |
. . . . . . . . . 10
⊢ (-𝑧 ∈ ℕ0
→ 0 ≤ -𝑧) |
49 | 48 | adantl 271 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 0 ≤ -𝑧) |
50 | 45 | le0neg1d 7737 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ (𝑧 ≤ 0 ↔ 0
≤ -𝑧)) |
51 | 49, 50 | mpbird 165 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 𝑧 ≤
0) |
52 | 43, 45, 43, 47, 51 | ltletrd 7646 |
. . . . . . 7
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 0 < 0) |
53 | 43 | ltnrd 7341 |
. . . . . . 7
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ ¬ 0 < 0) |
54 | 52, 53 | pm2.65da 620 |
. . . . . 6
⊢ (𝑧 ∈ ℕ → ¬
-𝑧 ∈
ℕ0) |
55 | 54, 4 | eleq2s 2177 |
. . . . 5
⊢ (𝑧 ∈ (ℤ ∩ ℕ)
→ ¬ -𝑧 ∈
ℕ0) |
56 | 42, 55 | mprgbir 2426 |
. . . 4
⊢ {𝑧 ∈ (ℤ ∩ ℕ)
∣ -𝑧 ∈
ℕ0} = ∅ |
57 | 40, 41, 56 | 3eqtr3i 2111 |
. . 3
⊢ (ℕ
∩ {𝑧 ∈ ℤ
∣ -𝑧 ∈
ℕ0}) = ∅ |
58 | | unennn 10817 |
. . 3
⊢ ((ℕ
≈ ℕ ∧ {𝑧
∈ ℤ ∣ -𝑧
∈ ℕ0} ≈ ℕ ∧ (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) =
∅) → (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈
ℕ) |
59 | 14, 39, 57, 58 | mp3an 1269 |
. 2
⊢ (ℕ
∪ {𝑧 ∈ ℤ
∣ -𝑧 ∈
ℕ0}) ≈ ℕ |
60 | 12, 59 | eqbrtri 3824 |
1
⊢ ℤ
≈ ℕ |