ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znnen GIF version

Theorem znnen 11838
Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.)
Assertion
Ref Expression
znnen ℤ ≈ ℕ

Proof of Theorem znnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unrab 3317 . . 3 ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)}
2 nnssz 9039 . . . . . 6 ℕ ⊆ ℤ
3 dfss1 3250 . . . . . 6 (ℕ ⊆ ℤ ↔ (ℤ ∩ ℕ) = ℕ)
42, 3mpbi 144 . . . . 5 (ℤ ∩ ℕ) = ℕ
5 dfin5 3048 . . . . 5 (ℤ ∩ ℕ) = {𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ}
64, 5eqtr3i 2140 . . . 4 ℕ = {𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ}
76uneq1i 3196 . . 3 (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
8 rabid2 2584 . . . 4 (ℤ = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)} ↔ ∀𝑧 ∈ ℤ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0))
9 elznn 9038 . . . . 5 (𝑧 ∈ ℤ ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)))
109simprbi 273 . . . 4 (𝑧 ∈ ℤ → (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0))
118, 10mprgbir 2467 . . 3 ℤ = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)}
121, 7, 113eqtr4ri 2149 . 2 ℤ = (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
13 nnex 8694 . . . 4 ℕ ∈ V
1413enref 6627 . . 3 ℕ ≈ ℕ
15 zex 9031 . . . . . 6 ℤ ∈ V
1615rabex 4042 . . . . 5 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∈ V
17 nn0ex 8951 . . . . 5 0 ∈ V
18 negeq 7923 . . . . . . . 8 (𝑧 = 𝑥 → -𝑧 = -𝑥)
1918eleq1d 2186 . . . . . . 7 (𝑧 = 𝑥 → (-𝑧 ∈ ℕ0 ↔ -𝑥 ∈ ℕ0))
2019elrab 2813 . . . . . 6 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ↔ (𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0))
2120simprbi 273 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → -𝑥 ∈ ℕ0)
22 negeq 7923 . . . . . . 7 (𝑧 = -𝑦 → -𝑧 = --𝑦)
2322eleq1d 2186 . . . . . 6 (𝑧 = -𝑦 → (-𝑧 ∈ ℕ0 ↔ --𝑦 ∈ ℕ0))
24 nn0negz 9056 . . . . . 6 (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ)
25 nn0cn 8955 . . . . . . . . 9 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
2625negnegd 8032 . . . . . . . 8 (𝑦 ∈ ℕ0 → --𝑦 = 𝑦)
2726eleq1d 2186 . . . . . . 7 (𝑦 ∈ ℕ0 → (--𝑦 ∈ ℕ0𝑦 ∈ ℕ0))
2827ibir 176 . . . . . 6 (𝑦 ∈ ℕ0 → --𝑦 ∈ ℕ0)
2923, 24, 28elrabd 2815 . . . . 5 (𝑦 ∈ ℕ0 → -𝑦 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
30 elrabi 2810 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → 𝑥 ∈ ℤ)
3130adantr 274 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℤ)
3231zcnd 9142 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℂ)
3325adantl 275 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℂ)
34 negcon2 7983 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
3532, 33, 34syl2anc 408 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → (𝑥 = -𝑦𝑦 = -𝑥))
3616, 17, 21, 29, 35en3i 6633 . . . 4 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ0
37 nn0ennn 10174 . . . 4 0 ≈ ℕ
3836, 37entri 6648 . . 3 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ
39 inrab2 3319 . . . 4 ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∩ ℕ) = {𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0}
40 incom 3238 . . . 4 ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∩ ℕ) = (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
41 rabeq0 3362 . . . . 5 ({𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} = ∅ ↔ ∀𝑧 ∈ (ℤ ∩ ℕ) ¬ -𝑧 ∈ ℕ0)
42 0red 7735 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 ∈ ℝ)
43 simpl 108 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℕ)
4443nnred 8701 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℝ)
45 nngt0 8713 . . . . . . . . 9 (𝑧 ∈ ℕ → 0 < 𝑧)
4645adantr 274 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 < 𝑧)
47 nn0ge0 8970 . . . . . . . . . 10 (-𝑧 ∈ ℕ0 → 0 ≤ -𝑧)
4847adantl 275 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 ≤ -𝑧)
4944le0neg1d 8247 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → (𝑧 ≤ 0 ↔ 0 ≤ -𝑧))
5048, 49mpbird 166 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ≤ 0)
5142, 44, 42, 46, 50ltletrd 8153 . . . . . . 7 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 < 0)
5242ltnrd 7843 . . . . . . 7 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → ¬ 0 < 0)
5351, 52pm2.65da 635 . . . . . 6 (𝑧 ∈ ℕ → ¬ -𝑧 ∈ ℕ0)
5453, 4eleq2s 2212 . . . . 5 (𝑧 ∈ (ℤ ∩ ℕ) → ¬ -𝑧 ∈ ℕ0)
5541, 54mprgbir 2467 . . . 4 {𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} = ∅
5639, 40, 553eqtr3i 2146 . . 3 (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ∅
57 unennn 11837 . . 3 ((ℕ ≈ ℕ ∧ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ ∧ (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ∅) → (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈ ℕ)
5814, 38, 56, 57mp3an 1300 . 2 (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈ ℕ
5912, 58eqbrtri 3919 1 ℤ ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 682   = wceq 1316  wcel 1465  {crab 2397  cun 3039  cin 3040  wss 3041  c0 3333   class class class wbr 3899  cen 6600  cc 7586  cr 7587  0cc0 7588   < clt 7768  cle 7769  -cneg 7902  cn 8688  0cn0 8945  cz 9022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-xor 1339  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-er 6397  df-en 6603  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-n0 8946  df-z 9023  df-q 9380  df-rp 9410  df-fl 10011  df-mod 10064  df-dvds 11421
This theorem is referenced by:  qnnen  11871
  Copyright terms: Public domain W3C validator