MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cld Unicode version

Theorem 0cld 17025
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
0cld  |-  ( J  e.  Top  ->  (/)  e.  (
Clsd `  J )
)

Proof of Theorem 0cld
StepHypRef Expression
1 dif0 3641 . . 3  |-  ( U. J  \  (/) )  =  U. J
21topopn 16902 . 2  |-  ( J  e.  Top  ->  ( U. J  \  (/) )  e.  J )
3 0ss 3599 . . 3  |-  (/)  C_  U. J
4 eqid 2387 . . . 4  |-  U. J  =  U. J
54iscld2 17015 . . 3  |-  ( ( J  e.  Top  /\  (/)  C_  U. J )  -> 
( (/)  e.  ( Clsd `  J )  <->  ( U. J  \  (/) )  e.  J
) )
63, 5mpan2 653 . 2  |-  ( J  e.  Top  ->  ( (/) 
e.  ( Clsd `  J
)  <->  ( U. J  \  (/) )  e.  J
) )
72, 6mpbird 224 1  |-  ( J  e.  Top  ->  (/)  e.  (
Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    e. wcel 1717    \ cdif 3260    C_ wss 3263   (/)c0 3571   U.cuni 3957   ` cfv 5394   Topctop 16881   Clsdccld 17003
This theorem is referenced by:  cls0  17067  indiscld  17078  iscldtop  17082  iccordt  17200  iscon2  17398  tgptsmscld  18101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-iota 5358  df-fun 5396  df-fv 5402  df-top 16886  df-cld 17006
  Copyright terms: Public domain W3C validator