Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  0disj Unicode version

Theorem 0disj 4032
 Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
0disj Disj

Proof of Theorem 0disj
StepHypRef Expression
1 0ss 3496 . . 3
21rgenw 2623 . 2
3 sndisj 4031 . 2 Disj
4 disjss2 4012 . 2 Disj Disj
52, 3, 4mp2 17 1 Disj
 Colors of variables: wff set class Syntax hints:  wral 2556   wss 3165  c0 3468  csn 3653  Disj wdisj 4009 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rmo 2564  df-v 2803  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3469  df-sn 3659  df-disj 4010
 Copyright terms: Public domain W3C validator