MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0idsr Structured version   Unicode version

Theorem 0idsr 8962
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
0idsr  |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )

Proof of Theorem 0idsr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 8925 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 6080 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  +R  0R )  =  ( A  +R  0R ) )
3 id 20 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  ->  [ <. x ,  y
>. ]  ~R  =  A )
42, 3eqeq12d 2449 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  +R  0R )  =  [ <. x ,  y >. ]  ~R  <->  ( A  +R  0R )  =  A
) )
5 df-0r 8929 . . . 4  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
65oveq2i 6084 . . 3  |-  ( [
<. x ,  y >. ]  ~R  +R  0R )  =  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )
7 1pr 8882 . . . . 5  |-  1P  e.  P.
8 addsrpr 8940 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( 1P  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )  =  [ <. (
x  +P.  1P ) ,  ( y  +P. 
1P ) >. ]  ~R  )
97, 7, 8mpanr12 667 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )  =  [ <. ( x  +P.  1P ) ,  ( y  +P.  1P ) >. ]  ~R  )
10 addclpr 8885 . . . . . . 7  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  +P.  1P )  e.  P. )
117, 10mpan2 653 . . . . . 6  |-  ( x  e.  P.  ->  (
x  +P.  1P )  e.  P. )
12 addclpr 8885 . . . . . . 7  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  +P.  1P )  e.  P. )
137, 12mpan2 653 . . . . . 6  |-  ( y  e.  P.  ->  (
y  +P.  1P )  e.  P. )
1411, 13anim12i 550 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  1P )  e.  P.  /\  ( y  +P.  1P )  e.  P. )
)
15 vex 2951 . . . . . . 7  |-  x  e. 
_V
16 vex 2951 . . . . . . 7  |-  y  e. 
_V
177elexi 2957 . . . . . . 7  |-  1P  e.  _V
18 addcompr 8888 . . . . . . 7  |-  ( z  +P.  w )  =  ( w  +P.  z
)
19 addasspr 8889 . . . . . . 7  |-  ( ( z  +P.  w )  +P.  v )  =  ( z  +P.  (
w  +P.  v )
)
2015, 16, 17, 18, 19caov12 6267 . . . . . 6  |-  ( x  +P.  ( y  +P. 
1P ) )  =  ( y  +P.  (
x  +P.  1P )
)
21 enreceq 8934 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( x  +P.  1P )  e.  P.  /\  ( y  +P.  1P )  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( x  +P.  1P ) ,  ( y  +P. 
1P ) >. ]  ~R  <->  ( x  +P.  ( y  +P.  1P ) )  =  ( y  +P.  ( x  +P.  1P ) ) ) )
2220, 21mpbiri 225 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( x  +P.  1P )  e.  P.  /\  ( y  +P.  1P )  e.  P. )
)  ->  [ <. x ,  y >. ]  ~R  =  [ <. ( x  +P.  1P ) ,  ( y  +P.  1P ) >. ]  ~R  )
2314, 22mpdan 650 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  [ <. x ,  y
>. ]  ~R  =  [ <. ( x  +P.  1P ) ,  ( y  +P.  1P ) >. ]  ~R  )
249, 23eqtr4d 2470 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )  =  [ <. x ,  y
>. ]  ~R  )
256, 24syl5eq 2479 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  +R  0R )  =  [ <. x ,  y >. ]  ~R  )
261, 4, 25ecoptocl 6986 1  |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   <.cop 3809  (class class class)co 6073   [cec 6895   P.cnp 8724   1Pc1p 8725    +P. cpp 8726    ~R cer 8731   R.cnr 8732   0Rc0r 8733    +R cplr 8736
This theorem is referenced by:  addgt0sr  8969  sqgt0sr  8971  map2psrpr  8975  supsrlem  8976  addresr  9003  mulresr  9004  axi2m1  9024  axcnre  9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-omul 6721  df-er 6897  df-ec 6899  df-qs 6903  df-ni 8739  df-pli 8740  df-mi 8741  df-lti 8742  df-plpq 8775  df-mpq 8776  df-ltpq 8777  df-enq 8778  df-nq 8779  df-erq 8780  df-plq 8781  df-mq 8782  df-1nq 8783  df-rq 8784  df-ltnq 8785  df-np 8848  df-1p 8849  df-plp 8850  df-ltp 8852  df-plpr 8922  df-enr 8924  df-nr 8925  df-plr 8926  df-0r 8929
  Copyright terms: Public domain W3C validator