MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ima Structured version   Unicode version

Theorem 0ima 5214
Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.)
Assertion
Ref Expression
0ima  |-  ( (/) " A )  =  (/)

Proof of Theorem 0ima
StepHypRef Expression
1 imassrn 5208 . . 3  |-  ( (/) " A )  C_  ran  (/)
2 rn0 5119 . . 3  |-  ran  (/)  =  (/)
31, 2sseqtri 3372 . 2  |-  ( (/) " A )  C_  (/)
4 0ss 3648 . 2  |-  (/)  C_  ( (/) " A )
53, 4eqssi 3356 1  |-  ( (/) " A )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1652   (/)c0 3620   ran crn 4871   "cima 4873
This theorem is referenced by:  gsumval3  15504  nghmfval  18746  isnghm  18747
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883
  Copyright terms: Public domain W3C validator