MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lno Unicode version

Theorem 0lno 21384
Description: The zero operator is linear. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0lno.0  |-  Z  =  ( U  0op  W
)
0lno.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
0lno  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  Z  e.  L )

Proof of Theorem 0lno
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . 3  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
2 eqid 2296 . . 3  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
3 0lno.0 . . 3  |-  Z  =  ( U  0op  W
)
41, 2, 30oo 21383 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  Z : ( BaseSet `  U
) --> ( BaseSet `  W
) )
5 simplll 734 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  U  e.  NrmCVec )
6 simpllr 735 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  W  e.  NrmCVec )
7 simplr 731 . . . . . . . 8  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  x  e.  CC )
8 simprl 732 . . . . . . . 8  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  y  e.  ( BaseSet `  U )
)
9 eqid 2296 . . . . . . . . 9  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
101, 9nvscl 21200 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  x  e.  CC  /\  y  e.  ( BaseSet `  U )
)  ->  ( x
( .s OLD `  U
) y )  e.  ( BaseSet `  U )
)
115, 7, 8, 10syl3anc 1182 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( x
( .s OLD `  U
) y )  e.  ( BaseSet `  U )
)
12 simprr 733 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  z  e.  ( BaseSet `  U )
)
13 eqid 2296 . . . . . . . 8  |-  ( +v
`  U )  =  ( +v `  U
)
141, 13nvgcl 21192 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
x ( .s OLD `  U ) y )  e.  ( BaseSet `  U
)  /\  z  e.  ( BaseSet `  U )
)  ->  ( (
x ( .s OLD `  U ) y ) ( +v `  U
) z )  e.  ( BaseSet `  U )
)
155, 11, 12, 14syl3anc 1182 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( (
x ( .s OLD `  U ) y ) ( +v `  U
) z )  e.  ( BaseSet `  U )
)
16 eqid 2296 . . . . . . 7  |-  ( 0vec `  W )  =  (
0vec `  W )
171, 16, 30oval 21382 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( (
x ( .s OLD `  U ) y ) ( +v `  U
) z )  e.  ( BaseSet `  U )
)  ->  ( Z `  ( ( x ( .s OLD `  U
) y ) ( +v `  U ) z ) )  =  ( 0vec `  W
) )
185, 6, 15, 17syl3anc 1182 . . . . 5  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( Z `  ( ( x ( .s OLD `  U
) y ) ( +v `  U ) z ) )  =  ( 0vec `  W
) )
191, 16, 30oval 21382 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  y  e.  ( BaseSet `  U )
)  ->  ( Z `  y )  =  (
0vec `  W )
)
205, 6, 8, 19syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( Z `  y )  =  (
0vec `  W )
)
2120oveq2d 5890 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( x
( .s OLD `  W
) ( Z `  y ) )  =  ( x ( .s
OLD `  W )
( 0vec `  W )
) )
221, 16, 30oval 21382 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  z  e.  ( BaseSet `  U )
)  ->  ( Z `  z )  =  (
0vec `  W )
)
235, 6, 12, 22syl3anc 1182 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( Z `  z )  =  (
0vec `  W )
)
2421, 23oveq12d 5892 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( (
x ( .s OLD `  W ) ( Z `
 y ) ) ( +v `  W
) ( Z `  z ) )  =  ( ( x ( .s OLD `  W
) ( 0vec `  W
) ) ( +v
`  W ) (
0vec `  W )
) )
25 eqid 2296 . . . . . . . . 9  |-  ( .s
OLD `  W )  =  ( .s OLD `  W )
2625, 16nvsz 21212 . . . . . . . 8  |-  ( ( W  e.  NrmCVec  /\  x  e.  CC )  ->  (
x ( .s OLD `  W ) ( 0vec `  W ) )  =  ( 0vec `  W
) )
276, 7, 26syl2anc 642 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( x
( .s OLD `  W
) ( 0vec `  W
) )  =  (
0vec `  W )
)
2827oveq1d 5889 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( (
x ( .s OLD `  W ) ( 0vec `  W ) ) ( +v `  W ) ( 0vec `  W
) )  =  ( ( 0vec `  W
) ( +v `  W ) ( 0vec `  W ) ) )
292, 16nvzcl 21208 . . . . . . . 8  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  ( BaseSet `  W ) )
306, 29syl 15 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( 0vec `  W )  e.  (
BaseSet `  W ) )
31 eqid 2296 . . . . . . . 8  |-  ( +v
`  W )  =  ( +v `  W
)
322, 31, 16nv0rid 21209 . . . . . . 7  |-  ( ( W  e.  NrmCVec  /\  ( 0vec `  W )  e.  ( BaseSet `  W )
)  ->  ( ( 0vec `  W ) ( +v `  W ) ( 0vec `  W
) )  =  (
0vec `  W )
)
336, 30, 32syl2anc 642 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( ( 0vec `  W ) ( +v `  W ) ( 0vec `  W
) )  =  (
0vec `  W )
)
3424, 28, 333eqtrd 2332 . . . . 5  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( (
x ( .s OLD `  W ) ( Z `
 y ) ) ( +v `  W
) ( Z `  z ) )  =  ( 0vec `  W
) )
3518, 34eqtr4d 2331 . . . 4  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( Z `  ( ( x ( .s OLD `  U
) y ) ( +v `  U ) z ) )  =  ( ( x ( .s OLD `  W
) ( Z `  y ) ) ( +v `  W ) ( Z `  z
) ) )
3635ralrimivva 2648 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  x  e.  CC )  ->  A. y  e.  (
BaseSet `  U ) A. z  e.  ( BaseSet `  U ) ( Z `
 ( ( x ( .s OLD `  U
) y ) ( +v `  U ) z ) )  =  ( ( x ( .s OLD `  W
) ( Z `  y ) ) ( +v `  W ) ( Z `  z
) ) )
3736ralrimiva 2639 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  A. x  e.  CC  A. y  e.  ( BaseSet `  U ) A. z  e.  ( BaseSet
`  U ) ( Z `  ( ( x ( .s OLD `  U ) y ) ( +v `  U
) z ) )  =  ( ( x ( .s OLD `  W
) ( Z `  y ) ) ( +v `  W ) ( Z `  z
) ) )
38 0lno.7 . . 3  |-  L  =  ( U  LnOp  W
)
391, 2, 13, 31, 9, 25, 38islno 21347 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( Z  e.  L  <->  ( Z : ( BaseSet `  U
) --> ( BaseSet `  W
)  /\  A. x  e.  CC  A. y  e.  ( BaseSet `  U ) A. z  e.  ( BaseSet
`  U ) ( Z `  ( ( x ( .s OLD `  U ) y ) ( +v `  U
) z ) )  =  ( ( x ( .s OLD `  W
) ( Z `  y ) ) ( +v `  W ) ( Z `  z
) ) ) ) )
404, 37, 39mpbir2and 888 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  Z  e.  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159   0veccn0v 21160    LnOp clno 21334    0op c0o 21337
This theorem is referenced by:  0blo  21386  nmlno0i  21388  blocn  21401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-grpo 20874  df-gid 20875  df-ginv 20876  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172  df-lno 21338  df-0o 21341
  Copyright terms: Public domain W3C validator